
Liferay Developer's Guide

Liferay Developer's Guide
Connor McKay, Editor
Jorge Ferrer, Editor
Copyright © 2011 by Liferay, Inc.

This work is offered under the Creative Commons Attribution-Share Alike Unported
license.

You are free:
● to share—to copy, distribute, and transmit the work
● to remix—to adapt the work

Under the following conditions:
● Attribution. You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

● Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

The full version of this license appears in the appendix of this book, or you may view
it online here:
http://creativecommons.org/licenses/by-sa/3.0

Contributors:
Joseph Shum, Alexander Chow, Redmond Mar, Ed Shin, Rich Sezov, Samuel Kong,
Connor McKay, Jorge Ferrer, Julio Camarero, Daniel Sanz, Juan Fernández, Sergio
González

http://creativecommons.org/licenses/by-sa/3.0

Table of ContentsTable of Contents
CONVENTIONS...5
PUBLISHER NOTES...6
UPDATES...6

1. Introduction...7
DEVELOPING APPLICATIONS FOR LIFERAY..7

Portlets...8
OpenSocial Gadgets..8
Reusing existing web applications...9
Supported technologies...10

EXTENDING AND CUSTOMIZING LIFERAY...11
Customizing the look and feel: Themes...11
Adding new predefined page layouts: Layout Templates...11
Customizing or extending the out of the box functionalities: Hook plugins....................11
Advanced customization: Ext plugins...12

CHOOSING THE BEST TOOL FOR THE JOB...12
2. The Plugins SDK...15

INITIAL SETUP...15
Ant Configuration...16
Plugins SDK Configuration..16

STRUCTURE OF THE SDK...17
3. Portlet Development...19

CREATING A PORTLET..19
Deploying the Portlet...20

ANATOMY OF A PORTLET...20
A Closer Look at the My Greeting Portlet..22

WRITING THE MY GREETING PORTLET...25
UNDERSTANDING THE TWO PHASES OF PORTLET EXECUTION: ACTION AND RENDER......................................27
PASSING INFORMATION FROM THE ACTION PHASE TO THE RENDER PHASE...30
DEVELOPING A PORTLET WITH MULTIPLE ACTIONS...33
OPTIONAL: ADDING FRIENDLY URL MAPPING TO THE PORTLET..35

4. Creating Liferay Themes...37
INTRODUCTION..37
CREATING A THEME...38

Deploying the Theme...38
ANATOMY OF A THEME..38
THUMBNAILS...40
JAVASCRIPT..40
SETTINGS..41
COLOR SCHEMES..42
PORTAL PREDEFINED SETTINGS..43
THEME INHERITANCE...44

5. Hooks...45
CREATING A HOOK...45

Deploying the Hook..45
OVERRIDING A JSP..46

Customizing JSPs without overriding the original..46
PERFORMING A CUSTOM ACTION..47

Extending and Overriding portal.properties..48
OVERRIDING A PORTAL SERVICE...48
OVERRIDING A LANGUAGE.PROPERTIES FILE..50

6. Ext plugins..51
CREATING AN EXT PLUGIN...52

iii

DEVELOPING AN EXT PLUGIN..54
Set up..54
Initial deployment..54
Redeployment...57
Advanced customization techniques...57

Advanced configuration files..58
Changing the API of an core service...60
Replacing core classes in portal-impl..60
Licencing and Contributing...61

DEPLOYING IN PRODUCTION...61
Method 1: Redeploying Liferay's web application...61
Method 2: Generate an aggregated WAR file..62

MIGRATING OLD EXTENSION ENVIRONMENTS...63
CONCLUSIONS..63

7. Liferay Tools...65
LIFERAY IDE...65

Installation..66
Requirements...66
Installation steps...66
Alternative installation..69

Set up..69
Liferay Plugins SDK Setup..69
Liferay Portal Tomcat Runtime / Server Setup..72

Importing Existing Projects into Liferay IDE..75
Importing existing Liferay Project from a Plugins SDK..75
Importing an existing Eclipse Project that is not aware of the Liferay IDE...............78
Importing an existing Liferay IDE project...79
Verifying that the import has succeeded..79
Setting the Console Encoding..83

Testing the Liferay portal server...84
Create a new Liferay plugin Project...86

SERVICE BUILDER..88
Define the Model...88

Overview of service.xml...89
Generate the Service..90
Write the Local Service Class..91
Built-In Liferay Services..92

8. Liferay APIs and Frameworks...93
SECURITY AND PERMISSIONS..93

JSR Portlet Security..93
Liferay's Permission System Overview..95
Implementing Permissions...95
Permission Algorithms..99
Adding a Resource..99
Adding Permission...100
Checking Permissions..101

ASSET FRAMEWORK...105
Adding, updating and deleting assets..106
Entering and displaying tags and categories..108
Publishing assets with Asset Publisher..109

OTHER FRAMEWORKS...114
9. Resources for Liferay Developers..117
10. Conclusions...121

iv

PPREFACEREFACE

This guide was written as a quick reference to getting started developing on the
Liferay Portal platform. It is a guide for those who want to get their hands dirty using
Liferay's framework and APIs to create fantastic websites.

For a more exhaustive view into Liferay development, we encourage you to check
out the complete, official guide to Liferay development, Liferay in Action, published by
Manning Publications. You can find this book online at http://manning.com/sezov.

The information contained herein has been organized in a format similar to a
reference, so that it will be easier to find specific details later.

 Conventions
Sections are broken up into multiple levels of headings, and these are designed to

make it easy to find information.

Source code and configuration file directives are presented like this.

If source code goes multi-line, the lines will be \
separated by a backslash character like this.

Italics are used to represent links or buttons to be clicked on in a user interface

v

Tip: This is a tip. Tips are used to indicate a suggestion or a piece of information that
affects whatever is being talked about in the surrounding text. They are always
accompanied by this gray box and the icon to the left.

http://manning.com/sezov

and to indicate a label or a name of a Java class.

Bold is used to describe field labels and portlets.

Page headers denote the chapters, and footers denote the particular section
within the chapter.

 Publisher Notes
It is our hope that this guide will be valuable to you, and that it will be an

indispensable resource as you begin to develop on the Liferay platform. If you need
any assistance beyond what is covered in this guide, Liferay, Inc. offers training,
consulting, and support services to fill any need that you might have. Please see
http://www. liferay .com/web/guest/services for further information about the
services we can provide.

As always, we welcome any feedback. If there is any way you think we could make
this guide better, please feel free to mention it on our forums. You can also use any of
the email addresses on our Contact Us page
(http://www. liferay .com/web/guest/about_us/contact_us). We are here to serve you,
our users and customers, and to help make your experience using Liferay Portal the
best it can be.

 Updates

 November 3rd 2010
Extended existing information about the ext plugin and added information about

alternatives for deployment to production.

 February 27th 2011
• Overall review of the style by Rich Sezov.

• Overall review of the guide and rewrite of some sections by Jorge Ferrer.

• Rewrite of the introduction to make it more welcoming to new developers.

• New section: “Understanding the two phases of portlets: action and render”

• Extended information of the chapter about “Ext Plugins” by Tomas
Polesovsky. New section on JSR-286 security by Tomas Polesovsky.

• New chapter about the Asset Framework and quick introduction to other
Liferay frameworks.

• New chapter about Liferay IDE

• New chapter for Conclusions with information about how to learn more
after reading this guide.

• New chapter with links to reference documentation.

 March 9th 2011
* Minor improvements and fixes based on the comments by community members

vi

http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/services
http://www.liferay.com/web/guest/services
http://www.liferay.com/web/guest/services

David H Nebinger and Deb Troxel.

vii

1. 1. IINTRODUCTIONNTRODUCTION

Welcome to the Liferay's Developers Guide, the official guide for all developers
that want to develop a portal based on Liferay or that want to develop an application
that anyone can use in their Liferay installation. This guide will asume that you
already know what a portal is and know how to use Liferay from an end user
perspective. If you don't, it is recommended that you read the What is a Portal?
Whitepaper and chapters 1, 5 and 6 of Liferay's Administration Guide.

This first chapter introduces the technologies and tools that you will be able to
use to develop applications and also to extend or customise the functionalities that
Liferay provides out of the box to adapt them to your needs.

The main mechanism that you as a developer will use to achieve all of the above
in a modular way are Liferay Plugins. Liferay Plugins are always distributed as Web
Archives (.war files), and deployed through Liferay's deploy mechanisms. There are
different types of plugins depending of its purpose. The following sections describe
how to develop applications for Liferay and how to perform customizations and the
types of plugins that you can use in each case.

 Developing applications for Liferay
According to Wikipedia “A web application is an application that is accessed over

a network such as the Internet or an intranet.”. A portal application is a web
application that can cohexist with many other applications in a civilized way and also
that can reuse many functionalities provided by the portal platform to reduce the
development time and deliver a more consistent experience to end users.

If you are reading this, you probably want to (or need to) develop an application
that runs on top of Liferay Portal. And you might be looking for an answer to the
question of what is the best and quickest way to do it? Liferay provides two main ways to
develop applications, and both are based on standards:

• Portlets: portlets are small web applications written in Java that follow a

http://www.liferay.com/documentation/liferay-portal/6.0/administration
http://www.liferay.com/products/what-is-a-portal

Introduction

certain set of rules to allow cohabitation within the same portal or even
within the same page. Portlets can be used to build applications as complex
as you want since the full suite of technologies and libraries for the Java
platform can be used.

• OpenSocial Gadgets: gadgets are usually small applications, written using
browser side technologies such as HTML and Javascript. One interesting
benefit of gadgets is that they are easy to develop and for that reason there
are thousands of them in repositories such as iGoogle's repository. When
the application becomes more complicated you will need a complementary
backend technology, such as portlets or regular Java web applications.

The following sections describe these options with some more detail.

 Portlets
Portlets are small web applications written in Java that run in a portion of a web

page. The heart of any portal implementation is its portlets, because they contain the
actual functionality. The portlet container is only responsible for aggregating the set
of portlets that are to appear on any particular page.

Portlets are the least invasive form of extension to Liferay, as they are entirely
self contained. Consequentially portlets are also the the most forward compatible
development option. They are hot-deployed as plugins into a Liferay instance,
resulting in zero downtime. A single plugin can contain multiple portlets, allowing
you to split up your functionality into several smaller pieces that can be arranged
dynamically on a page. Portlets can be written using any of the java web frameworks
that support portlets development, including Liferay's specific frameworks:
MVCPortlet or AlloyPortlet.

 OpenSocial Gadgets
Like portlets, OpenSocial Gadgets are an standard way to develop applications for

a portal environment. From a technology perspective one key difference is that they
don't mandate an specific backend technology, such as JavaEE, PHP, Ruby, Python,
etc. Another difference is that it has been designed specifically to implement social
applications, while portlets were designed any type of application. Because of this,
OpenSocial Gadgets, not only provide set of technologies to develop and run
applications but also a set of APIs that allow the application to obtain information
from the social environment such as information about the user profile, his activities
or his friends.

It is possible to deploy OpenSocial Gadgets in Liferay in one of two ways:

• Remote Gadget: A remote gadget is one that is executed in a remote server
but is shown to the user in a given page just as if it was another application
of the platform. This option is very simple but has the drawback that the
portal depends on the remote server for that gadget to work. This might not
even be an option in some intranet environments in which there isn't full
access to Internet.

• Local Gadget: consists in deploying the gadget in the Liferay server in the

 10 Developing applications for Liferay

http://www.google.com/ig/directory?synd=open

Introduction

similarly as portlets are deployed. Gadgets are defined as an XML file so all
you need to do is to upload that file to the server. Some people like to
upload them directly through the file system, FTP or similar protocols. In
some other cases, just uploading it with theDocument Library portlet and
copying the URL is enough. Once you have the URL you can go to the Control
Panel > OpenSocial, click the “New Gadget” button and enter the URL as
shown in the following screenshot:

After this is done, the gadget will appear as an application that page
administrators can add to their pages.

One additional very interesting feature of the latest versions of Liferay is that it is
possible to expose any application developed as portlets, as OpenSocial gadgets to the
outside world. That is, you can develop a portlet and then let anyone with access to
your portlet to add it to the pages of other portals or social networks as a remote
gadget.

Note that since an OpenSocial gadget is defined in an XML file, there is no need to
create a plugin (that is a .war file) in order to deploy it. All you need to do is make that
XML file accessible within the same or another server and let Liferay know the URL.

 Reusing existing web applications
Sometimes you don't start from scratch, but there is an existing application that

already exists and which has not been implemented using Portlets or OpenSocial
Gadgets. What can you do in that situation? There are many options available. Some
of the most popular are:

• Rewrite your application as a portlet

• Create simple portlets that interact with your application (possibly using
Web Services) and offer all or part of the functionality to end users.

• Create an OpenSocial gadget as a wrapper for your application. The Gadget
will use an Iframe to show part of your application in the portal page.

Developing applications for Liferay 11

Introduction

• Create a portlet that integrates the remote application either using an
iframe or an HTTP proxy (For example using Liferay's WebProxy portlet).
You will also need to find a way to achieve transfer the authentication
between the portal and your application.

There are many more options and many reasons why you may want to choose one
or another. Reviewing each of them is out of the scope of this guide.

If the existing application has been developed as a JavaEE application, Liferay
provides a technology caled Web Application Integrator that allows prototyping the
integration and provides several nice features.

In order to use Web Application Integrator all you need to do is deploy the WAR
file of your web application as you would do with any Liferay plugin (for example, by
using the control panel or by copying it to the deploy directory). As a result Liferay
will automatically create a portlet that integrates your application using an iframe.

 Supported Technologies
Liferay as a platform strives to provide compatibility with all Java technologies

that a developer may want to use to develop their own applications. Thanks to the
portlet and the JavaEE specifications each portlet application can use its own set of
libraries and technologies regardless of whether they are what Liferay uses itself or
not. This section refers mainly to portlet plugins, other plugin types are more
restricted. For example the ext plugins can only use libraries that are compatible with
the ones used by the core Liferay code.

Since the choice of available frameworks and technologies is very broad, the task
can be daunting to newcomers. This section attempts to provide some advice to help
developers choose the best tools for their needs. This advice can be grouped in three:

1. Use what you know: If you already know a framework, that can be your
first option (Struts 2, Spring MVC, PHP, Ruby...)

2. Adapt to your real needs: Component based frameworks (JSF, Vaadin,
GWT) are specially good for desktop-like applications. MVC frameworks
on the other hand provide more flexibility.

3. When in doubt, pick the simpler solution: Portlet applications are often
much simpler than standalone web applications, so, when in doubt use
simpler frameworks. (MVC Portlet, Alloy Portlet)

Some of the frameworks mentioned above include their own JavaScript code to
provide a very high degree of interaction. That is the case of GWT, Vaadin or JSF
implementations such as IceFaces or Rich Faces. In other cases the developers prefer
to write their own JavaScript code. In such cases it's most often recommended to use
one of the available JavaScript libraries. Some of the most common libraries that can
be used with Liferay are jQuery, Dojo, YUI, Sencha (previously known as ExtJs),
Sproutcore, etc. Starting with version 6, Liferay also provides its own library called
AlloyUI which is based on YUI 3 and provides a large set of components specifically
designed for very efficient and interactive applications that work well in portal
environments. Liferay's core portlets use AlloyUI for all Javascript code. Developers
can also use AlloyUI for their custom portlets or choose any other JavaScript library

 12 Developing applications for Liferay

Introduction

as long as they make sure that it will not create conflicts with the code of other
portlets deployed in the same portal.

Besides the frameworks and libraries mentioned in this section, there are literally
thousands more available to Java developers to handle persistence, caching,
connections to remote services, and much more. Liferay does not impose specific
requirements on the use of any of those frameworks so that portal developers can
choose the best tools for their projects.

 Extending and customizing Liferay
Liferay provides many out of the box features, included a fully featured content

management system, a social collaboration suite and several productivity tools. For
some portals those functionalities might be exactly what you need, but for some
others you might want to extend them or customize how they work or how they look
by default.

Liferay provides several types of plugins that are specialized for an specific type
of customization. It is possible to combine several plugin types into a single .war file.
For example it is a common practice to combine Themes and Layout Templates. The
following sections describe each type of plugin you may need to use.

 Customizing the look and feel: Themes
Themes allow the look of the Liferay portal to be changed using a combination of

CSS and Velocity templates. In many cases, it is possible to adapt the default Liferay
theme to the desired look using only CSS, providing the most forward compatibility. If
CSS is not sufficient and more major changes are required, Liferay allows you to
include only the templates you modified in your theme, and it will automatically copy
the rest from the default theme. Like portlets, themes are hot-deployed as plugins
into a Liferay instance.

 Adding new predefined page layouts: Layout Templates
Layouts are similar to themes, except that they change the arrangement of

portlets on a page rather than its look. Layout templates are also written in Velocity
and are hot-deployable.

 Customizing or extending the out of the box functionalities: Hook
plugins

Hook plugins are the recommended method of customizing the the core
functionality of Liferay at many predefined extension points. Hook plugins can be
used to modify portal properties or to perform custom actions on startup, shutdown,
login, logout, session creation and session destruction. Using service wrappers, it is
possible for a hook plugin to replace any of the core Liferay services with a custom
implementation. Hook plugins can also replace the JSP templates used by any of the
default portlets, allowing you to customize their appearance as desired. Best of all,
hooks are hot-deployable plugins just like portlets.

Extending and customizing Liferay 13

Introduction

 Advanced customization: Ext plugins
Ext plugins provide the largest degree of flexibility in modifying the Liferay core,

and allow replacing essentially any class with custom implementations. This
flexibility comes at a cost however, as it is highly unlikely that an Ext plugin written
for one version of Liferay will continue to work in the next version without
modification. For this reason, Ext plugins are only recommended for cases where an
advanced customization is really needed and there is no other way to accomplish the
same goal. Also you should make sure that you are familiar with the Liferay core to
make sure the Ext plugin doesn't have a negative effect on existing funcitonalities..
Even though Ext plugins are deployed as plugins, the server must be restarted for
changes to take effect. For this reason, Ext plugins should not be combined with other
types of plugins.

Tip: If you have developed for Liferay 5.2 or before, you may be familiar
with what was known as “Extension Environment”. Ext plugins are a new
feature in Liferay 6.0 which replace the extension environment in order to
simplify its development. It is possible to automatically convert any
existing Extension Environment into a plugin. Check the chapter Migrating

old extension environments for detailed instructions.

 Choosing the best tool for the job
The Java ecosystem is well know for providing a wide variety of options for

almost any developer work that must be done. This is a great advantage because you
can find the tool that fits best your needs and the way you work. For that reason once
you have found a tool that you are confortable with and have learned to use it you
want to keep using it.

On the other hand, the wide variety of tools is often intimidating for newcomers,
because they need to choose when they still don't have the experience to decide
which option is better.

In Liferay we have taken a pragmatic approach to make sure Liferay developers
can benefit from the variety of options while still provide a learning curve that is as
soft as possible. To do that we have chosen two Open Source technologies that you
can use if you don't have another favorites:

• Apache Ant and the Plugins SDK: Liferay provides a development
environment called the Plugins SDK that will allow you to develop all types
of plugins by executing a set of predefined commands (also known as targets
sin Ant's nomenclature). You can use the Plugins SDK directly from the
command line, using editors like Emacs, Vi EditPlus or even the Notepad.
You can also integrate it with your favorite IDE, since almost all of them
provide support for Apache ant. The next chapter describes how to use the
Plugins SDK in detail.

• Eclipse and the Liferay IDE: Eclipse is the most popular and well known Java
IDE and provides a wide variety of features. Liferay IDE is a plugin for
Eclipse that extend its functionalities to make development of all types of

 14 Choosing the best tool for the job

Introduction

Liferay plugins much easier. Liferay IDE uses the Plugins SDK underneath,
but you don't even need to know unless you are trying to perform an
advanced operation not directly supported by the IDE.

This guide will show how to develop for Liferay using the Plugins SDK. We have
done so to make sure that it was useful for as many developers as possible even if they
don't like IDEs or if they don't use Eclipse.

The guide also has a full chapter on the Liferay IDE. If you are an IDE person and
specially if you are an Eclipse user, you may start by reading that chapter first and
then go back to reading from the second chapter. It won't be hard to repeat the steps
described in the guide using the Liferay IDE.

What about if I don't like Apache Ant and I prefer to use Maven? Many
developers prefer one of the alternatives to Apache Ant. The most popular of these
alternatives is Maven. To support developers that want to use Maven we have
mavenized Liferay artifacts so that they can easily be referred from your pom.xml. We
are in the process of writing a chapter about using Maven for Liferay development
and will be added to this guide in the future. Meanwhile check the following blog
entry from Thiago Moreira for more information:

http://www.liferay.com/web/thiago.moreira/blog/-/blogs/liferay-s-artifact-are-
now-mavenized

What if I don't like Eclipse and prefer to use Netbeans, IntelliJ IDEA or other
IDE? There are many IDEs out there and everyone has its strong aspects. We decided
to build Liferay IDE on top of Eclipse because it is the most popular Open Source
option. But we also want to make sure developers can use their IDE of choice. In fact
quite a few core developers use Netbeans and Intellij IDEA (who has gracefully
provided an Open Source license to Liferay's core developers). Both of these IDEs have
support for integration with Apache Ant, so you can use the Plugins SDK with them.
Additionally, Sun Microsystems developed an extension to Netbeans called the Portal
Pack that is explicitly designed to develop plugins for Liferay (and their Liferay
flavour called WebSpace). You can find more about the Portal Pack in the following
URL:

http://netbeans.org/kb/articles/portalpack.html

That's it for the introduction. Let's get started with real development work!

Choosing the best tool for the job 15

http://netbeans.org/kb/articles/portalpack.html
http://www.liferay.com/web/thiago.moreira/blog/-/blogs/liferay-s-artifact-are-now-mavenized
http://www.liferay.com/web/thiago.moreira/blog/-/blogs/liferay-s-artifact-are-now-mavenized

2. 2. TTHEHE P PLUGINSLUGINS SDK SDK

Java developers have a wide variety of tools and development environments.
Liferay makes every effort to remain tool agnostic, so that you can choose the tools
that works best for you. For that reason we provide a Plugins Software Development
Kit (SDK) which is based on Apache Ant and may be used along with any editor or
Integrated Development Environment (IDE). The chapters of this guide will use the
Plugins SDK and a text editor, but you may use whatever tool you are comfortable
with. In a later chapter we also introduce Liferay IDE, a plugin for eclipse that
simplifies development for Liferay.

Tip: If you are an Eclipse user and prefer to start working with it from be very
beginning, you can read that chapter first before reading the rest of the guide..

 Initial Setup
Setting up your environment for Liferay development is very straightforward.

First, download a fresh copy of Liferay Portal bundled with Tomcat from the Liferay
website at http://www.liferay.com/downloads/. We recommend using Tomcat for
development, as it is small, fast, and takes up less resources than most other servlet
containers. Also download the Plugins SDK from the Additional Files page:

1. Unzip both archives to a folder of your choosing. Avoid using a folder
name that contains spaces because some operating systems have
problems running Java applications in folders with spaces in the name.

2. (Optional) By default Liferay Portal Community Edition comes bundled
with many plugins. It's common to remove them to speed up the server
startup. To do this, in the liferay-portal-[version]/tomcat-[tomcat-
version]/webapps directory, delete all the directories except for ROOT
and tunnel-web.

http://www.liferay.com/downloads/

The Plugins SDK

3. Start Liferay:

▪ Windows: navigate with the file browser to liferay-
portal-[version]/tomcat-[tomcat-version]/bin and
double click startup.bat. To shut the server down
later, press Ctrl-C in the terminal window.

▪ Linux and Mac OS X: open a terminal, navigate to
liferay-portal-[version]/tomcat-[tomcat-version]/bin,
enter the following command

./startup.sh

Once Liferay starts your browser should open to http://localhost:8080/ and you
can login with the email test@liferay.com and password test.

 Ant Configuration
Before you can begin developing portlets, you must first have some tools

installed. Building projects in the Plugins SDK requires that you have Ant 1.7.0 or
higher installed on your machine. Download the latest version of Ant from
http://ant.apache.org/. Decompress the archive into a folder of your choosing.

Next, set an environment variable called ANT_HOME which points to the folder
to which you installed Ant. Use this variable to add the binaries for Ant to your PATH
by adding $ANT_HOME/bin to your PATH environment variable.

You can do this on Linux or Mac OS X by modifying your .bash_profile file as
follows (assuming you installed Ant in /java):

export ANT_HOME=/java/apache-ant-1.8.1

export PATH=$PATH:$ANT_HOME/bin

Close and reopen your terminal window to make these settings take effect.

You can do this on Windows by going to Start -> Control Panel, and double-clicking
the System icon. Go to Advanced, and then click the Environment Variables button.
Under System Variables, select New. Make the Variable Name ANT_HOME and the
Variable Value the path to which you installed Ant (e.g., c:\java\apache-ant-1.8.1), and
click OK.

Scroll down until you find the PATH environment variable. Select it and click
Edit. Add %ANT_HOME%\bin to the end of the Variable Value. Click OK, and then
click OK again. Open a command prompt and type ant -version and press Enter. You
should get and output similar to this:

Apache Ant(TM) version 1.8.2 compiled on December 20 2010

If not, check your environment variable settings and make sure they are pointing
to the directory where you unzipped Ant.

 18 Initial Setup

http://ant.apache.org/
http://localhost:8080/

The Plugins SDK

 Plugins SDK Configuration
Now that all the proper tools are in place, we must configure the Plugins SDK to

be able to deploy into your Liferay instance. You will notice that the Plugins SDK
contains a file called build.properties. This file contains the default settings about the
location of your Liferay installation and your deployment folder. You can use this file
as a reference, but you should not modify it directly (In fact you will see the message
“DO NOT EDIT THIS FILE” at the top if you open it). In order to override the default
settings, create a new file in the same folder called build.${user.name}.properties, where
${user.name} is your user ID on your machine. For example, if your user name is
jsmith (for John Smith), you would create a file called build.jsmith.properties.

Edit this file and add the following line:

app.server.dir=the directory containing your application server

In our case, app.server.dir should be the absolute path to your liferay-portal-
[version]/tomcat-[tomcat-version] directory.

Save the file. You are now ready to start using the Plugins SDK.

 Structure of the SDK
Each folder in the Plugins SDK contains scripts for creating new plugins for that

type. New plugins are placed in their own subdirectory of the appropriate plugin
directory. For instance, a new portlet called “greeting-portlet” would reside in liferay-
plugins-sdk-6/portlets/greeting-portlet.

The Plugins SDK can house all of your plugin projects enterprise-wide, or you can
have separate Plugins SDK projects for each plugin. For example, if you have an
internal Intranet using Liferay with some custom portlets, you could keep those
portlets and themes in their own Plugins SDK project in your source code repository.
If you also have an external instance of Liferay for your public Internet web site, you
could have a separate Plugins SDK with those projects as well. Or you could further
separate your projects by having a different Plugins SDK project for each portlet or
theme project.

It is also possible to use use the Plugins SDK as a simple cross-platform project
generator. You can create a plugin project using the Plugins SDK and then copy the
resulting project folder to your IDE of choice. This method requires some manual
modification of the ant scripts, but it makes it possible to conform to the strict
standards some organizations have for their Java projects.

Structure of the SDK 19

3. 3. PPORTLETORTLET D DEVELOPMENTEVELOPMENT

In this chapter we will create and deploy a simple portlet using the Plugins SDK.
It will allow a customized greeting to be saved in the portlet's preferences, and then
display it whenever the portlet is viewed. Finally we will add friendly URL mapping to
the portlet to clean up its URLs.

In developing your own portlets you are free to use any framework you prefer,
such as Struts, Spring MVC, or JSF. For this portlet we will use the Liferay MVCPortlet
framework as it is simple, lightweight, and easy to understand.

Additionally, Liferay allows for the consuming of PHP and Ruby applications as
portlets, so you do not need to be a Java developer in order to take advantage of
Liferay's built-in features (such as user management, communities, page building and
content management). You can use the Plugins SDK to deploy your PHP or Ruby
application as a portlet, and it will run seamlessly inside of Liferay. There are plenty
of examples of this; to see them, check out the directory plugins/trunk from Liferay's
public Subversion repository.

 Creating a Portlet
Creating portlets with the Plugins SDK is extremely simple. As noted before, there

is a portlets folder inside of the Plugins SDK folder. This is where your portlet projects
will reside. To create a new portlet, first decide what its name is going to be. You need
both a project name (without spaces) and a display name (which can have spaces).
When you have decided on your portlet's name, you are ready to create the project.
For the greeting portlet, the project name is “my-greeting”, and the portlet title is
“My Greeting”. Navigate to the portlets directory in the terminal and enter the
following command (Linux and Mac OS X):

./create.sh my-greeting "My Greeting"

On Windows enter the following instead:

Portlet Development

create.bat my-greeting "My Greeting"

You should get a BUILD SUCCESSFUL message from Ant, and there will now be a
new folder inside of the portlets folder in your Plugins SDK. This folder is your new
portlet project. This is where you will be implementing your own functionality.
Notice that the Plugins SDK automatically appends “-portlet” to the project name
when creating this folder.

Alternatively, if you will not be using the Plugins SDK to house your portlet
projects, you can copy your newly created portlet project into your IDE of choice and
work with it there. If you do this, you may need to make sure the project references
some .jar files from your Liferay installation, or you may get compile errors. Since the
ant scripts in the Plugins SDK do this for you automatically, you don't get these errors
when working with the Plugins SDK.

To resolve the dependencies for portlet projects, see the class path entries in the
build-common.xml file in the Plugins SDK project. You will be able to determine from
the plugin.classpath and portal.classpath entries which .jar files are necessary to build
your newly created portlet project.

Tip: If you are using a source control system such as Subversion, CVS,
Mercurial, Git, etc. this might be a good moment to do an initial check in of
your changes. After building the plugin for deployment several additional
files will be generated that should not be handled by the source control
system.

 Deploying the Portlet
Liferay provides a mechanism called autodeploy that makes deploying portlets

(and any other plugin type) a breeze. All you need to do is drop a WAR file into a
directory and the portal will take care of making any necessary changes specific to
Liferay and then deploy it to the application server. This will be the method used
throughout this guide.

Tip: Liferay supports a wide variety of application servers. Many of them,
such as Tomcat or Jboss, provide a simple way to deploy web applications
by just copying a file into a folder and Liferay's autodeploy mechanism
makes use of that possibility. You should be aware though that some
application servers, such as Websphere or Weblogic require the use of

specific tools to deploy web applications, so Liferay's autodeploy process won't work
for them.

Open a terminal window in your portlets/my-greeting-portlet directory and enter
this command:

ant deploy

You should get a BUILD SUCCESSFUL message, which means that your portlet is

 22 Creating a Portlet

Portlet Development

now being deployed. If you switch to the terminal window running Liferay, and wait
for a few seconds, you should see the message “1 portlet for my-greeting-portlet is
available for use”. If not, something is wrong and you should double-check your
configuration.

Go to your web browser and log in to the portal as explained earlier. Then hover
over Add at the top of the page, and click on More. Select the Sample category, and
then click Add next to My Greeting. Your portlet should appear in the page below.
Congratulations, you've just created your first portlet!

 Anatomy of a Portlet
A portlet project is made up at a minimum of three components:

1. Java Source

2. Configuration files

3. Client-side files (*.jsp, *.css, *.js, graphics, etc.)

When using Liferay's Plugins SDK these files are stored in a standard directory
structure which looks like the following:

/PORTLET-NAME/

build.xml

/docroot/

/css/

/js/

/WEB-INF/
/src/ (not created by default)

liferay-display.xml

liferay-plugin-package.properties

liferay-portlet.xml

portlet.xml

web.xml

icon.png

view.jsp

The portlet we just created is a fully functional portlet which can be deployed to
your Liferay instance.

New portlets are configured by default to use the MVCPortlet framework, a very
light framework that hides part of the complexity of portlets and makes the most
common operations easier. MVCPortlet uses separate JSPs for each page in the
portlet.

Portlets created in the SDK are configured by default to use the MVCPortlet
framework, a very light framework that hides part of the complexity of portlets and
makes the most common operations easier. MVCPortlet uses separate JSPs for each
page in the portlet. MVCPortlet uses by default a JSP with the mode name for each of
the registered portlet modes. For example edit.jsp for the edit mode, help.jsp for the
help mode, etc.

Anatomy of a Portlet 23

Portlet Development

The Java Source is stored in the docroot/WEB-INF/src folder

The Configuration Files are stored in the docroot/WEB-INF folder. The standard
JSR-286 portlet configuration file portlet.xml is here, as well as three Liferay-specific
configuration files. The Liferay-specific configuration files are completely optional,
but are important if your portlets are going to be deployed on a Liferay Portal server.

liferay-display.xml: This file describes what category the portlet should appear
under in the Add menu in the dockbar (the horizontal bar that appear at the top of the
page to all logged in users).

liferay-portlet.xml: This file describes some optional Liferay-specific enhancements
for JSR-286 portlets that are installed on a Liferay Portal server. For example, you can
set whether a portlet is instanceable, which means that you can place more than one
portlet instance on a page, and each one will have its own separate data. Please see
the DTD for this file for further details, as there are too many settings to list here. The
DTD may be found in the definitions folder in the Liferay source code.

liferay-plugin-package.properties: This file describes the plugin to Liferay's hot
deployer. One of the things that can be configured in this file is dependency .jars. If a
portlet plugin has dependencies on particular .jar files that already come with Liferay,
you can specify them in this file and the hot deployer will modify the .war file on
deployment to copy those .jars inside. That way you don't have to include the .jars
yourself and the .war will be lighter.

Client Side Files are the .jsp, .css, and JavaScript files that you write to
implement your portlet's user interface. These files should go in the docroot folder
somewhere—either in the root of the folder or in a folder structure of their own.
Remember that with portlets you are only dealing with a portion of the HTML
document that is getting returned to the browser. Any HTML code you have in your
client side files should be free of global tags such as <html> or <head>. Additionally, all
CSS classes and element IDs must be namespaced to prevent conflicts with other
portlets. Liferay provides tools (a taglib and API methods) to generate the namespace
that you should use.

 A Closer Look at the My Greeting Portlet
If you are new to portlet development, this section will take a closer look at the

configuration options of a portlet.

docroot/WEB-INF/portlet.xml

When using the Plugins SDK, the default content of the portlet descriptor is as
follows:

<portlet>

<portlet-name>my-greeting</portlet-name>

<display-name>My Greeting</display-name>

<portlet-class>com.liferay.util.bridges.mvc.MVCPortlet</portlet-class>

<init-param>

<name>view-jsp</name>

<value>/view.jsp</value>

</init-param>

 24 Anatomy of a Portlet

Portlet Development

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

</supports>

<portlet-info>

<title>My Greeting</title>

<short-title>My Greeting</short-title>

<keywords>My Greeting</keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

Here is a basic summary of what each of the elements represents:

portlet-name

The portlet-name element contains the canonical name of the
portlet. Each portlet name is unique within the portlet application
(that is, within the portlet plugin). This is also referred within
Liferay Portal as the portlet id

display-name
The display-name type contains a short name that is intended to be
displayed by tools. It is used by display-name elements. The
display name need not be unique.

portlet-class The portlet-class element contains the fully qualified class name
that will handle invocations to the portlet.

init-param The init-param element contains a name/value pair as an
initialization param of the portlet.

expiration-cache
Expiration-cache defines expiration-based caching for this portlet.
The parameter indicates the time in seconds after which the portlet
output expires. -1 indicates that the output never expires.

Anatomy of a Portlet 25

Portlet Development

supports

The supports element contains the supported mime-type. Supports
also indicates the portlet modes a portlet supports for a specific
content type. All portlets must support the view mode.
The concept of “portlet modes” is defined by the portlet
specification. Modes are used to separate certain views of the
portlet from others. What is special about portlet modes is that the
portal knows about them and can provide generic ways to navigate
between portlet modes (for example through links in the box
surrounding the portlet when it is added to a page). For that reason
they are useful for operations that are common to all or most
portlets. The most common usage is to create an edit screen where
each user can specify personal preferences for the portlet.

portlet-info Portlet-info defines portlet information.

security-role-ref
The security-role-ref element contains the declaration of a security
role reference in the code of the web application. Specifically in
Liferay, the role-name references which roles can access the portlet.

docroot/WEB-INF/liferay-portlet.xml - In addition to the standard portlet.xml
options, there are optional Liferay-specific enhancements for Java Standard portlets
that are installed on a Liferay Portal server. By default, Plugins SDK sets the contents
of this descriptor to the following:

<liferay-portlet-app>

<portlet>

<portlet-name>my-greeting</portlet-name>

<icon>/icon.png</icon>

<instanceable>false</instanceable>

<header-portlet-css>/css/main.css</header-portlet-css>

<footer-portlet-javascript>/js/main.js</footer-portlet-javascript>

<css-class-wrapper>my-greeting-portlet</css-class-wrapper>

</portlet>

<role-mapper>

<role-name>administrator</role-name>

<role-link>Administrator</role-link>

</role-mapper>

<role-mapper>

<role-name>guest</role-name>

<role-link>Guest</role-link>

</role-mapper>

<role-mapper>

<role-name>power-user</role-name>

<role-link>Power User</role-link>

</role-mapper>

<role-mapper>

<role-name>user</role-name>

<role-link>User</role-link>

</role-mapper>

</liferay-portlet-app>

 26 Anatomy of a Portlet

Portlet Development

Here is a basic summary of what some of the elements represents.

portlet-name
The portlet-name element contains the canonical name of the
portlet. This needs to be the same as the portlet-name given in
portlet.xml

icon Path to icon image for this portlet

instanceable Indicates if multiple instances of this portlet can appear on the
same page.

header-portlet-css The path to the .css file for this portlet to be included in the
<head> of the page

footer-portlet-
javascript

The path to the .js file for this portlet, to be included at the end
of the page before </body>

There are many more elements that you should be aware of for more advanced
development. Please see the DTD for this file in the definitions folder in the Liferay
source code for more information.

 Writing the My Greeting Portlet
Now that you are familiar with the structure of a portlet, it's time to actually

make it do something useful. Our portlet will have two pages. view.jsp will display the
greeting and provide a link to the edit page. Edit.jsp will show a form with a text field
allowing the greeting to be changed, along with a link back to the view page.
MVCPortlet class will handle the rendering of our JSPs, so for this example we won't
have to write a single Java class.

First, we don't want multiple greetings on the same page, so we are going to make
the My Greeting portlet non-instanceable. To do this, edit liferay-portlet.xml and
change the value of the element instanceable from true to false so that it looks like
this:

<instanceable>false</instanceable>

Next, we will create our JSP templates. Start by editing view.jsp and replacing its
current contents with the following:

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ page import="javax.portlet.PortletPreferences" %>

<portlet:defineObjects />

<%

PortletPreferences prefs = renderRequest.getPreferences();

String greeting = (String)prefs.getValue(

"greeting", "Hello! Welcome to our portal.");

%>

<p><%= greeting %></p>

Writing the My Greeting Portlet 27

Portlet Development

<portlet:renderURL var="editGreetingURL">

<portlet:param name="jspPage" value="/edit.jsp" />

</portlet:renderURL>

<p><a href="<%= editGreetingURL %>">Edit greeting</p>

Next, create edit.jsp in the same directory as view.jsp with the following content:

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ page import="javax.portlet.PortletPreferences" %>

<portlet:defineObjects />

<%

PortletPreferences prefs = renderRequest.getPreferences();

String greeting = renderRequest.getParameter("greeting");

if (greeting != null) {

prefs.setValue("greeting", greeting);

prefs.store();

%>

 <p>Greeting saved successfully!</p>

<%

}

%>

<%

greeting = (String)prefs.getValue(

"greeting", "Hello! Welcome to our portal.");

%>

<portlet:renderURL var="editGreetingURL">

<portlet:param name="jspPage" value="/edit.jsp" />

</portlet:renderURL>

<aui:form action="<%= editGreetingURL %>" method="post">

<aui:input label="greeting" name="greeting" type="text" value="<%=
greeting %>" />

<aui:button type="submit" />

</aui:form>

<portlet:renderURL var="viewGreetingURL">

<portlet:param name="jspPage" value="/view.jsp" />

</portlet:renderURL>

<p><a href="<%= viewGreetingURL %>">← Back</p>

Deploy the portlet again by entering the command ant deploy in your my-
greeting-portlet folder. Go back to your web browser and refresh the page; you should

 28 Writing the My Greeting Portlet

Portlet Development

now be able to use the portlet to save and display a custom greeting.

Tip: If your portlet deployed successfully, but you don't see any changes in
your browser after refreshing the page, Tomcat may have failed to rebuild
your JSPs. Simply delete the work folder in liferay-portal-[version]/tomcat-
[tomcat-version] and refresh the page again to force them to be rebuilt.

There are a few important details to notice in this implementation. First, the links
between pages are created using the <portlet:renderURL> tag, which is defined by the
http://java.sun.com/portlet_2_0 tag library. These URLs have only one parameter
named jspPage, which is used by MVCPortlet to determine which JSP to render for
each request. You must always use taglibs to generate URLs to your portlet. This
restriction exists because the portlet does not own the whole page, only a fragment of
it, so the URL must always go to the portal who is responsible for rendering, not only
your portlet but also any others that the user might put in the page. The portal will be
able to interpret the taglib and create a URL with enough information to be able to
render the whole page.

Second, notice that the form in edit.jsp has the prefix aui, signifying that it is part
of the Alloy UI tag library. Alloy greatly simplifies the code required to create nice
looking and accessible forms, by providing tags that will render both the label and the
field at once. You can also use regular HTML or any other taglibs to create forms
based on your own preferences.

Another JSP tag that you may have noticed is <portlet:defineObjects/>. The
portlet specification defined this tag in order to be able to insert into the JSP a set of
implicit variables that are useful for portlet developers such as renderRequest,
portletConfig, portletPreferences, etc.

One word of warning about the portlet we have just built. For the purpose of
making this example as simple and easy to follow as possible, we have cheated a little
bit. The portlet specification does not allow to set preferences from a JSP, because
they are executed in what is known as the render state. There are good reasons for
this restriction, that are explained in the next section.

 Understanding the Two phases of Portlet Execution
One of the characteristics of portlet development that confuses most developers

used to regular servlet development or who are used to other environments such as
PHP, Python or Ruby is the need for two phases. The good news is that once you get
used to them they become simple and useful.

The reason why two phases are needed is because a portlet does not own a whole
HTML page, it only generates a fragment of it. The portal that holds the portlet is the
one responsible for generating the page by invoking one or several portlets and
adding some additional HTML around them. Usually, when the user interacts with the
page, for example by clicking a link or a button, she's doing it within a specific
portlet. The portal must forward the action performed by the user to that portlet and
after that it must render the whole page, showing the content of that portlet, which
may have changed, and also the content of the other portlets. For the other portlets in
the page which have not been invoked by the user, what the portal does to get their

Understanding the Two phases of Portlet
Execution

 29

Portlet Development

content is to repeat the last invocation again (since it assumes it will yield the same
result).

Now imagine this scenario: we have a page with two portlets, a navigation portlet
and a shopping portlet. A user comes to the page and does the following:

1. Load the page

2. Clicks a button on the shopping portlet that automatically charges an
amount on her credit card and starts a process to ship her the product
she just bought. After this operation the portal also invokes the
navigation portlet with its default view.

3. Click a link in the navigation portlet which causes the content of the
portlet to change. After that the portal must also show the content of
the shopping portlet, so it repeats the last action (the one in which the
user clicked a button), which causes a new charge on the credit card
and the start of a new shipping process.

I guess that by now you can tell that this is not right. Since the portal doesn't
know whether the last operation on a portlet was an action or not, it would have no
option but to repeat it over and over to obtain the content of the portlet again (at
least until the Credit Card reached its limit).

Fortunately portals don't work that way. In order to prevent situations like the
one described above, the portlet specification defines two phases for every request of
a portlet, to allow the portal to differentiate when an action is being performed (and
should not be repeated) and when the content is being produced (rendered):

• Action phase: The action phase can only be invoked for one portlet at a
time and is usually the result of an user interaction with the portlet. In
this phase the portlet can change its status, for instance changing the
user preferences of the portlet. It is also recommended that any inserts
and modifications in the database or operations that should not be
repeated are performed in this phase.

• Render phase: The render phase is always invoked for all portlets in
the page after the action phase (which may or not exist). This includes
the portlet that also had executed its action phase. It's important to
note that the order in which the render phase of the portlets in a page
gets executedis not guaranteed by the portlet specification. Liferay has
an extension to the specification through the element render-weight in
liferay-portlet.xml. Portlets with a higher render weight will be
rendered before those with a lower value.

In our example, so far we have used a portlet class called MVCPortlet. That is all
that the portlet if it only has a render phase. In order to be able to add custom code
that will be executed in the action phase (and thus will not be executed when the
portlet is shown again) you need to create a subclass of MVCPortlet or directly a
subclass of GenericPortlet if you don't want to use the lightweight Liferay's
framework.

Our example above could be enhanced by creating the following class:

 30
Understanding the Two phases of Portlet

Portlet Development

package com.liferay.samples;

import java.io.IOException;

import javax.portlet.ActionRequest;

import javax.portlet.ActionResponse;

import javax.portlet.PortletException;

import javax.portlet.PortletPreferences;

import com.liferay.util.bridges.mvc.MVCPortlet;

public class MyGreetingPortlet extends MVCPortlet {

@Override

public void processAction(

ActionRequest actionRequest, ActionResponse actionResponse)

throws IOException, PortletException {

PortletPreferences prefs = actionRequest.getPreferences();

String greeting = actionRequest.getParameter("greeting");

if (greeting != null) {

prefs.setValue("greeting", greeting);

prefs.store();

}

super.processAction(actionRequest, actionResponse);

}

}

The file portlet.xml also needs to be changed so that it points to our new class:

<portlet>

<portlet-name>my-greeting</portlet-name>

<display-name>My Greeting</display-name>

<portlet-class>com.liferay.samples.MyGreetingPortlet</portlet-class>

<init-param>

<name>view-jsp</name>

<value>/view.jsp</value>

</init-param>

 …

Finally, you will need to do a minor change in the edit.jsp file and change the URL
to which the form is sent to let the portal know that it should execute the action
phase. This is the perfect moment for you to know that there are three types of URLs
that can be generated by a portlet:

• renderURL: this is the type of URL that we have used so far. It invokes a

Understanding the Two phases of Portlet
Execution

 31

Portlet Development

portlet using only its render phase.

• actionURL: this type of URL tells the portlet that it should execute its
action phase before rendering all the portlets in the page.

• resourceURL: this type of URL can be used to retrieve images, XML, JSON
or any other type of resource. It is often used to generate images or
other media types dynamically. It is very useful also to make AJAX
requests to the server. The key difference of this URL type in
comparison to the other two is that the portlet has full control of the
data that will be sent in response.

So we must change the edit.jsp to use an actionURL by using the JSP tag of the
same name. We also remove the previous code that was saving the preference:

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ page import="com.liferay.portal.kernel.util.ParamUtil" %>

<%@ page import="com.liferay.portal.kernel.util.Validator" %>

<%@ page import="javax.portlet.PortletPreferences" %>

<portlet:defineObjects />

<%

PortletPreferences prefs = renderRequest.getPreferences();

String greeting = (String)prefs.getValue(

"greeting", "Hello! Welcome to our portal.");

%>

<portlet:actionURL var="editGreetingURL">

<portlet:param name="jspPage" value="/edit.jsp" />

</portlet:actionURL>

<aui:form action="<%= editGreetingURL %>" method="post">

<aui:input label="greeting" name="greeting" type="text" value="<%=
greeting %>" />

<aui:button type="submit" />

</aui:form>

<portlet:renderURL var="viewGreetingURL">

<portlet:param name="jspPage" value="/view.jsp" />

</portlet:renderURL>

<p><a href="<%= viewGreetingURL %>">← Back</p>

Try deploying again the portlet after making these changes, everything should
work exactly like before.

Well, almost. If you have paid close attention you may have missed something,

 32
Understanding the Two phases of Portlet

Portlet Development

now the portlet is no longer showing a message to the user to let him know that the
preference has been saved right after clicking the save button. In order to implement
that we must have a way to pass information from the action phase to the render
phase, so that the JSP can know that the preference has just been saved and then
show a message to the user.

 Passing Information from the Action Phase to the
Render Phase

There are two ways to pass information from the action phase to the render
phase. The first one is through render parameters. Within the implementation in the
processAction method you can invoke the setRenderParameter to add a new parameter
to the request that the render phase will be able to read:

actionResponse.setRenderParameter("parameter-name", "value");

From the render phase (in our case, the JSP), this value can be read using the
regular parameter reading method:

renderRequest.getParameter("parameter-name");

It is important to be aware that when invoking an action URL, the parameters
specified in the URL will only be readable from the action phase (that is the
processAction method). In order to pass parameter values to the render phase you
must read them from the actionRequest and then invoke the setRenderParameter
method for each parameter needed.

Tip: Liferay offers a convenient extension to the portlet specification
through the MVCPortlet class to copy all action parameters directly as
render parameters. You can achieve this just by setting the following init-
param in your portlet.xml:

<init-param>

<name>copy-request-parameters</name>

<value>true</value>

</init-param>

I mentioned there was a second method and in fact it is a better method for what
we are trying to do in our example. One final thing you should know about render
parameters is that the portal remembers them for all later executions of the portlet
until the portlet is invoked again with different parameters. That is, if a user clicks a
link in our portlet and a render parameter is set, and then the user continues
browsing through other portlets in the page, each time the page is reloaded the portal
will render our portlet using the render parameters that we set. If we used render
parameters in our example then the success message will be shown not only right
after saving, but also every time the portlet is rendered until the portlet is invoked
again without that render parameter.

The second method of passing information from the action phase to the render
phase is not unique to portlets so it might be familiar to you: using the session. By

Passing Information from the Action Phase
to the Render Phase

 33

Portlet Development

using the session, your code can set an attribute in the actionRequest that is then read
from the JSP. In our case the JSP would also immediately remove the attribute from
the session so that the message is only shown once. Liferay provides a helper class
and taglib to do this operation easily. In the processAction you need to use the
SessionMessages class:

package com.liferay.samples;

import java.io.IOException;

import javax.portlet.ActionRequest;

import javax.portlet.ActionResponse;

import javax.portlet.PortletException;

import javax.portlet.PortletPreferences;

import com.liferay.portal.kernel.servlet.SessionMessages;

import com.liferay.util.bridges.mvc.MVCPortlet;

public class MyGreetingPortlet extends MVCPortlet {

@Override

public void processAction(

ActionRequest actionRequest, ActionResponse actionResponse)

throws IOException, PortletException {

PortletPreferences prefs = actionRequest.getPreferences();

String greeting = actionRequest.getParameter("greeting");

if (greeting != null) {

prefs.setValue("greeting", greeting);

prefs.store();

}

SessionMessages.add(actionRequest, "success");

super.processAction(actionRequest, actionResponse);

}

}

Also, in the JSP you would need to add the liferay-ui:success JSP tag as shown
below (note that you also need to add the taglib declaration at the top):

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<%@ page import="com.liferay.portal.kernel.util.ParamUtil" %>

<%@ page import="com.liferay.portal.kernel.util.Validator" %>

<%@ page import="javax.portlet.PortletPreferences" %>

<portlet:defineObjects />

 34
Passing Information from the Action Phase

Portlet Development

<%

PortletPreferences prefs = renderRequest.getPreferences();

String greeting = (String)prefs.getValue(

"greeting", "Hello! Welcome to our portal.");

%>

<liferay-ui:success key="success" message="Greeting saved successfully!" />

<portlet:actionURL var="editGreetingURL">

<portlet:param name="jspPage" value="/edit.jsp" />

</portlet:actionURL>

<aui:form action="<%= editGreetingURL %>" method="post">

<aui:input label="greeting" name="greeting" type="text" value="<%=
greeting %>" />

<aui:button type="submit" />

</aui:form>

<portlet:renderURL var="viewGreetingURL">

<portlet:param name="jspPage" value="/view.jsp" />

</portlet:renderURL>

<p><a href="<%= viewGreetingURL %>">← Back</p>

After this change, redeploy the portlet, go to the edit screen and save it. You
should see a nice message that looks like this:

There is also an equivalent util class for notifying errors. This is commonly used
after catching an exception in the processAction. For example.

try {

prefs.setValue("greeting", greeting);

prefs.store();

}

catch(Exception e) {

SessionErrors.add(actionRequest, "error");

}

And then the error, if it exists, is shown in the JSP using the liferay-ui:error tag:

Passing Information from the Action Phase
to the Render Phase

 35

Illustration 1: The sample “My Greetings” portlet showing a success message

Portlet Development

<liferay-ui:error key="error" message="Sorry, an error prevented saving your
greeting" />

When the error occurs you should see something like this in your portlet:

The first message is automatically added by Liferay. The second one is the one
you entered in the JSP.

 Developing a Portlet with Multiple Actions
So far we have developed a portlet that has two different views, the default view

and an edit view. Adding more views is easy and all you have to do to link to them is
to use the jspPage parameter when creating the URL. But we only have one action.
How do we add another action, for example for sending an email to the user?

You can have as many actions as you want in a portlet, each of them will need to
be implemented as a method that receives two parameters, an ActionRequest and an
ActionResponse. The name of the method can be whatever you want since you will be
referring to it when creating the URL.

Let's rewrite the example from the previous section to use custom names for the
methods of the action to set the greeting and add a second action.

public class MyGreetingPortlet extends MVCPortlet {

public void setGreeting(

ActionRequest actionRequest, ActionResponse actionResponse)

throws IOException, PortletException {

PortletPreferences prefs = actionRequest.getPreferences();

String greeting = actionRequest.getParameter("greeting");

if (greeting != null) {

try {

prefs.setValue("greeting", greeting);

prefs.store();

SessionMessages.add(actionRequest, "success");

}

 36 Developing a Portlet with Multiple Actions

Illustration 2: The sample “My Greetings” portlet showing an error message

Portlet Development

catch(Exception e) {

SessionErrors.add(actionRequest, "error");

}

}

}

public void sendEmail(

ActionRequest actionRequest, ActionResponse actionResponse)

throws IOException, PortletException {

// Add code here to send an email

}

}

Note how we no longer need to invoke the processAction method of the super
class, because we are not overriding it.

This change of name also requires a simple change in the URL, to specify the
name of the method that should be invoked to execute the action. In the edit.jsp edit
the actionURL so that it looks like this:

<portlet:actionURL var="editGreetingURL" name="setGreeting">

<portlet:param name="jspPage" value="/edit.jsp" />

</portlet:actionURL>

That's it, now you know all the basics of portlets and are ready to use your Java
knowledge to build portlets that get integrated in Liferay. The next section explains
an extension provided by Liferay to the portlet specification to provide pretty URLs to
your portlets that you can use if desired.

 Optional: Adding Friendly URL Mapping to the Portlet
You will notice that when you click the Edit greeting link, you are taken to a page

with a URL similar to this:

http://localhost:8080/web/guest/home?
p_p_id=mygreeting_WAR_mygreetingportlet&p_p_lifecycle=0&p_p_state=normal&p_p
_mode=view&p_p_col_id=column-1&_mygreeting_WAR_mygreetingportlet_jspPage=
%2Fedit.jsp

In Liferay 6 there is a new feature that requires minimal work to change this into:

http://localhost:8080/web/guest/home/-/my-greeting/edit

This feature, known as friendly URL mapping, takes unnecessary parameters out
of the URL and allows you to place the important parameters in the URL path rather
than the query string. To add this functionality, first edit liferay-portlet.xml and add
the following lines directly after </icon> and before <instanceable>. Be sure to remove
the line breaks and the backslashes!

<friendly-url-mapper-class>com.liferay.portal.kernel.portlet.Default\

FriendlyURLMapper</friendly-url-mapper-class>

Optional: Adding Friendly URL Mapping to
the Portlet

 37

Portlet Development

<friendly-url-mapping>my-greeting</friendly-url-mapping>

<friendly-url-routes>com/sample/mygreeting/portlet/my-greeting-friendly-url\

-routes.xml</friendly-url-routes>

Next, create the file (note the line break):

my-greeting-portlet/docroot/WEB-INF/src/com/sample/mygreeting/portlet/my\

-greeting-friendly-url-routes.xml

Create new directories as necessary. Place the following content into the new file:

<?xml version="1.0"?>

<!DOCTYPE routes PUBLIC "-//Liferay//DTD Friendly URL Routes 6.0.0//EN"
"http://www.liferay.com/dtd/liferay-friendly-url-routes_6_0_0.dtd">

<routes>

<route>

<pattern>/{jspPageName}</pattern>

<generated-parameter name="jspPage">/{jspPageName}.jsp</generated-
parameter>

</route>

</routes>

Redeploy your portlet, refresh the page, and try clicking either of the links again.
Notice how much shorter and more user-friendly the URL is, without even having to
modify the JSPs. For more information on friendly URL mapping, you can check full
discussion of this topic in Liferay in Action.

 38
Optional: Adding Friendly URL Mapping to

4. 4. CCREATINGREATING L LIFERAYIFERAY T THEMESHEMES

Themes are hot deployable plugins which can completely transform the look and
feel of the portal. Theme creators can make themes to provide an interface that is
unique to the site that the portal will serve. Themes make it possible to change the
user interface so completely that it would be difficult or impossible to tell that the site
is running on Liferay. Liferay provides a well organized, modular structure to its
themes. This allows the theme developer to be able to quickly modify everything from
the border around a portlet window to every object on the page, because all of the
objects are easy to find. Additionally, theme developers do not have to customize
every aspect of their themes. A theme can inherit the styling, images, and templates
from any of the built in themes, overriding them only where necessary. This allows
themes to be smaller and less cluttered with extraneous data that already exists in the
default theme (such as graphics for emoticons for the message boards portlet).

 Introduction
Liferay's themes are designed in such way that they can be very easy to create.

You can start by making changes in CSS files and as your customization requirements
grow you can also make changes to the HTML that controls the page design.

Some of the technologies that you may need to know in order to make the best
use of themes are:

• CSS: If desired you can create a whole new theme just by changing a CSS
file.

• Velocity: a simple yet powerful tool to create templates. You will need
to use it in order to customize the HTML generated by the theme.

• JavaScript: can be used to add special behaviors.

• XML: each theme has a configuration file written in XML. You will use
this file to specify some settings of the theme.

Creating Liferay Themes

To follow the examples of this guide you will also need some familiarity with
using the command line. Alternatively you can use the Liferay IDE and use its menus
instead of the commands used in the text.

But let's finish the introduction and get started with our first theme.

 Creating a Theme
The process for creating a new theme is nearly identical to the one for making a

portlet. You will need both a project name (without spaces) and a display name
(which can have spaces). For example, the project name could be “deep-blue”, and the
theme title “Deep Blue”. In the terminal, navigate to the themes directory in the
Plugins SDK and enter the following command (Linux and Mac OS X):

./create.sh deep-blue "Deep Blue"

On Windows enter the following instead:

create.bat deep-blue "Deep Blue"

This command will create a blank theme in your themes folder. Notice that the
Plugins SDK automatically appends “-theme” to the project name when creating this
folder.

 Deploying the Theme
Open a terminal window in your themes/deep-blue-theme directory and enter this

command:

ant deploy

You should get a BUILD SUCCESSFUL message, which means that your theme is
now being deployed. If you switch to the terminal window running Liferay, and wait
for a few seconds, you should see the message “1 theme for deep-blue-theme is
available for use”.

Go to your web browser and login to the portal as explained earlier. Then hover
over Manage at the top of the page, and click on Page. Directly underneath the words
Manage Pages select the Look and Feel tab. Simply click on your theme to activate it.

 Anatomy of a Theme
Custom themes are based on differences from one of several built-in Liferay

themes.

The structure of a theme is designed to separate different types of resources into
easily accessible folders. The full structure of the deep blue theme is shown below:

/deep-blue-theme/

/docroot/

/WEB-INF/

liferay-plugin-package.properties

/_diffs/ (subfolders not created by default)

/css/

 40 Anatomy of a Theme

Creating Liferay Themes

/images/

/js/

/templates/

/css/

application.css

base.css

custom.css

dockbar.css

extras.css

forms.css

layout.css

main.css

navigation.css

portlet.css

/images/

(many directories)

/js/

main.js

/templates/

init_custom.vm

navigation.vm

portal_normal.vm

portal_pop_up.vm

portlet.vm

You will notice that there is a _diffs folder inside the docroot directory of your
theme; this is where you will place your theme code. You only need to customize the
parts of your theme that will differ from the parent theme. To do this, you mirror the
directory structure of the parent theme inside of the _diffs folder, placing only the
folders and files you need to customize there.

You will also notice that there are several other folders inside docroot; these
were copied over from the parent theme in your Liferay bundle when you deployed
your theme. You should use these files as the basis for your modifications. For
example, to customize the navigation, you would copy navigation.vm from deep-
blue-theme/docroot/templates/navigation.vm into deep-blue-

theme/docroot/_diffs/templates folder (you may have to create this folder first). You
can then open this file and customize it to your liking.

For custom styles, create a folder named css inside your _diffs folder and place a
single file there called custom.css. This is where you would put all of your new styles
and all of your overrides of the styles in the parent theme. Custom.css is loaded last,
and so styles in this file are able to override any styles in the parent theme.

Best practice recommends that you make all your custom themes using only the
custom.css file, and that you not override any of the templates unless absolutely
necessary. This will make future upgrades far easier, as you won't have to manually
modify your templates to add support for new Liferay features.

Whenever you make modifications to your theme, redeploy it by opening a
terminal in themes/deep-blue-theme and entering the command ant deploy. Wait a

Anatomy of a Theme 41

Creating Liferay Themes

few seconds until the theme deploys, and then refresh your browser to see your
changes.

Tip: If you wish to see changes even more quickly, it is also possible to
modify you theme directly in your Liferay bundle. In our example,
custom.css is located in liferay-portal-[version]/tomcat-
6.0.26/webapps/deep-blue-theme/css. However, for modifications made
here to appear in your browser as soon as you refresh the page, you must
enable Liferay Developer Mode. See the Liferay wiki for more information.

Also make sure that you copy any changes you make back into your _diffs folder, or
they will be overwritten when you redeploy your theme.

 Thumbnails
You will notice that in the Look and Feel settings the Classic theme has a thumbnail

preview of what it looks like, while our theme has only a broken image. To correct
this, take a screenshot of your theme and save it in _diffs/images with the name
thumbnail.png. It must have the exact size of 150 pixels wide by 120 pixels high. You
should also save a larger version in the same directory with the name screenshot.png.
Its size must be exactly 1080 pixels wide by 864 pixels high. After redeploying your
theme, it will have a thumbnail preview just like the Classic theme.

 JavaScript
Liferay now includes its own JavaScript library called Alloy, which is an extension

to Yahoo's YUI3 framework. Developers can take advantage of the full power of either
of these frameworks in their themes. Inside of the main.js file, you will find
definitions for three JavaScript callbacks:

AUI().ready(

function() {

}

);

Liferay.Portlet.ready(

/*

This function gets loaded after each and every portlet on the page.

portletId: the current portlet's id

node: the Alloy Node object of the current portlet

*/

function(portletId, node) {

}

);

Liferay.on(

'allPortletsReady',

 42 JavaScript

Creating Liferay Themes

/*

This function gets loaded when everything, including the portlets, is on

the page.

*/

function() {

}

);

● AUI().ready(fn);

This callback is executed as soon as the HTML in the page has finished loading
(minus any portlets loaded via ajax).

● Liferay.Portlet.ready(fn);

Executed after each portlet on the page has loaded. The callback receives two
parameters: portletId and node. portletId is the id of the portlet that was just loaded.
node is the Alloy Node object of the same portlet.

● Liferay.on('allPortletsReady', fn);

Executed after everything—including AJAX portlets—has finished loading.

 Settings
Each theme can define settings to make it configurable. These settings are

defined in a file named liferay-look-and-feel.xml inside WEB-INF. This file does not
exist by default, so you should now create it with the following content:

<?xml version="1.0"?>

<!DOCTYPE look-and-feel PUBLIC "-//Liferay//DTD Look and Feel 6.0.0//EN"
"http://www.liferay.com/dtd/liferay-look-and-feel_6_0_0.dtd">

<look-and-feel>

<compatibility>

<version>6.0.0+</version>

</compatibility>

<theme id="deep-blue" name="Deep Blue">

<settings>

<setting key="my-setting" value="my-value" />

</settings>

</theme>

</look-and-feel>

You can define additional settings by adding more <setting> elements. These
settings can be accessed in the theme templates using the following code:

$theme.getSetting("my-setting")

For example, say we need to create two themes that are exactly the same except
for some changes in the header. One of the themes has more details while the other is
smaller (and takes less screen real estate). Instead of creating two different themes,
we are going to create only one and use a setting to choose which header we want.

Settings 43

Creating Liferay Themes

In the portal_normal.vm template we could write:

#if ($theme.getSetting("header-type") == "detailed")

#parse ("$full_templates_path/header_detailed.vm")

#else

#parse ("$full_templates_path/header_brief.vm")

#end

Then when we write the liferay-look-and-feel.xml, we write two different
entries that refer to the same theme but have a different value for the header-type
setting:

<theme id="deep-blue" name="Deep Blue">

<settings>

<setting key="header-type" value="detailed" />

</settings>

</theme>

<theme id="deep-blue-mini" name="Deep Blue Mini">

<settings>

<setting key="header-type" value="brief" />

</settings>

</theme>

 Color Schemes
Color schemes are specified using a CSS class name, with which you can not only

change colors, but also choose different background images, different border colors,
and so on.

In your liferay-look-and-feel.xml, you can define color schemes like so:

<theme id="deep-blue" name="Deep Blue">

<settings>

<setting key="my-setting" value="my-value" />

</settings>

<color-scheme id="01" name="Day">

<css-class>day</css-class>

<color-scheme-images-path>${images-path}/color_schemes/${css-
class}</color-scheme-images-path>

</color-scheme>

<color-scheme id="02" name="Night">

<css-class>night</css-class>

</color-scheme>

</theme>

Inside of your _diffs/css folder, create a folder called color_schemes. Inside of
that folder, place a .css file for each of your color schemes. In the case above, we
would could either have just one called night.css and let the default styling handle
the first color scheme, or you could have both day.css and night.css.

Assuming you follow the second route, place the following lines at the bottom of
your custom.css file:

 44 Color Schemes

Creating Liferay Themes

@import url(color_schemes/day.css);

@import url(color_schemes/night.css);

The color scheme CSS class is placed on the <body> element, so you can use it to
identify you styling. In day.css you would prefix all of your CSS styles like this:

body.day { background-color: #ddf; }

.day a { color: #66a; }

And in night.css you would prefix all of your CSS styles like this:

body.night { background-color: #447; color: #777; }

.night a { color: #bbd; }

You can also create separate thumbnail images for each of your color schemes.
The <color-scheme-images-path> element tells Liferay where to look for these images
(note that you only have to place this element in one of the color schemes for it to
affect both). For our example, create the folders _diffs/images/color_schemes/day
and _diffs/images/color_schemes/night. In each of these folders place a
thumbnail.png and screenshot.png file with the same sizes as before.

 Portal Predefined Settings
The portal defines some settings that allow the theme to determine certain

behaviors. So far there are only two predefined settings but this number may grow in
the future. These settings can be modified from liferay-look-and-feel.xml.

portlet-setup-show-borders-default

If set to false, the portal will turn off borders by default for all the portlets. The
default is true.

Example:

<settings>

<setting key="portlet-setup-show-borders-default" value="false" />

</settings>

This default behavior can be overridden for individual portlets using:

• liferay-portlet.xml

• Portlet CSS popup setting

bullet-style-options

This setting is used by the Navigation portlet to determine the CSS class name of
the list of pages. The value must be a comma separated list of valid bullet styles to be
used.

Example:

<settings>

<setting key="bullet-style-options" value="classic,modern,tablemenu" />

</settings>

The bullet style can be changed by the user in the Navigation portlet

Portal Predefined Settings 45

Creating Liferay Themes

configuration. The chosen style will be applied as a CSS class on the <div> containing
the navigation. This class will be named in the following pattern:

.nav-menu-style-{BULLET_STYLE_OPTION} {

... CSS selectors ...

}

Here is an example of the HTML code that you would need to add style through
CSS code. In this case the bullet style option is modern:

<div class="nav-menu nav-menu-style-modern">

<ul class="breadcrumbs lfr-component">

...

</div>

Using CSS and/or some unobtrusive Javascript it's possible to implement any
type of menu.

 Theme inheritance
By default themes are based on the _styled theme, which provides only basic styling
of portlets. If you open the build.xml file in your theme's directory, you will see the
following:
<project name="theme" basedir="." default="deploy">

<import file="../build-common-theme.xml" />

<property name="theme.parent" value="_styled" />

</project>

The theme.parent property determines which built-in theme your theme will
inherit from. In addition to the _styled theme, you may also choose to inherit from
the _unstyled theme, which contains no styling whatsoever. This involves more
work, but in exchange you get full flexibility to design your own CSS files from
scratch.

You can also use the default Liferay theme, called classic, as the parent of your
themes. Using this approach allows you to start with a look and feel that already
works and get nice results quickly. The drawback is that since there is so much done
already for you, there won't be as much flexibility to build the desired design. It's a
compromise between creating a theme as quickly as possible versus having full
control of the result. It's your choice.

 46 Theme inheritance

5. 5. HHOOKSOOKS

Liferay Hooks are the newest type of plugin which Liferay Portal supports. They
were introduced late in the development cycle for Liferay Portal 5.1.x, and are now
the preferred way to customize Liferay's core features. As with portlets, layout
templates, and themes, they are created using the Plugins SDK.

Hooks can fill a wide variety of the common needs for overriding Liferay core
functionality. Whenever possible, hooks should be used in place of Ext plugins, as
they are hot-deployable and more forward compatible. Some common scenarios
which require the use of a hook are the need to perform custom actions on portal
startup or user login, overwrite or extend portal JSPs, modify portal properties, or
replace a portal service with your own implementation.

 Creating a Hook
Hooks are stored within the hooks directory of the plugins directory. Navigate to

this directory in terminal and enter the following command to create a new hook
(Linux and Mac OS X):

./create.sh example "Example"

On Windows enter the following instead:

create.bat example "Example"

You should get a BUILD SUCCESSFUL message from Ant, and there will now be a
new folder inside of the hooks folder in your Plugins SDK. Notice that the Plugins SDK
automatically appends “-hook” to the project name when creating this folder.

 Deploying the Hook
Open a terminal window in your hooks/example-hook directory and enter this

command:

Hooks

ant deploy

You should get a BUILD SUCCESSFUL message, which means that your hook is
now being deployed. If you switch to the terminal window running Liferay, and wait
for a few seconds, you should see the message “Hook for example-hook is available
for use.” However, unlike portlets or themes, your new hook doesn't actually do
anything yet.

 Overriding a JSP
One of the simplest tasks a hook can perform is replacing a portal JSP. In this

example we will modify the Terms of Use page. First, create the directory
hooks/example-hook/docroot/META-INF/custom_jsps. Next, edit hooks/example-
hook/docroot/WEB-INF/liferay-hook.xml, and add the following between
<hook></hook>:

<custom-jsp-dir>/META-INF/custom_jsps</custom-jsp-dir>

Now, any JSP you place inside the custom_jsps directory will replace its original
inside your Liferay instance when your hook is deployed. The directory structure
inside this folder must mirror the one within liferay-portal-[version]/tomcat-
6.0.26/webapps/ROOT. To override the Terms of Use, copy liferay-portal-[version]/tomcat-
6.0.26/webapps/ROOT/html/portal/terms_of_use.jsp to hooks/example-
hook/docroot/META-INF/custom_jsps/html/portal/terms_of_use.jsp. You will have
to create all the intervening directories first.

Next, open your copy of the terms_of_use.jsp and make a few changes. Deploy
your hook and wait until it is deployed successfully. Then, create a new user and try
to log in. When you get to the Terms of Use page, you will see your version instead of
the default. Please note that this is not the recommended way of changing the Terms
of Use, it is simply a convenient example. You can actually replace the Terms of Use
with web content by setting two properties in portal-ext.properties. A hook is not
necessary.

If you look inside the liferay-portal-[version]/tomcat-
6.0.26/webapps/ROOT/html/portal directory you will see that there are now two
terms of use files, one called terms_of_use.jsp and another called
terms_of_use.portal.jsp. terms_of_use.jsp is the version from your hook, while
terms_of_use.portal.jsp is the original. If you now undeploy your hook by deleting
its directory in webapps, you will see that your replacement JSP is removed and the
.portal.jsp file is renamed again to take its place. In this manner, you can override
any JSP in the Liferay core, while also being able to revert your changes by
undeploying your hook. Note however that it is not possible to override the same JSP
from multiple hooks, as Liferay will not know which version to use.

 Customizing JSPs without overriding the original
The drawback of overridding a JSP is that if the original changes (for example to

fix a bug) then you have to also change your customized file in order to benefit from
the original change.

If you wish to avoid this drawback and make your JSP modifications even less

 48 Overriding a JSP

Hooks

invasive, it is possible to render the original JSP into a string, and then modify it
dynamically afterwards. This makes it possible to change minor elements of a JSP,
such as adding a new heading or button, without needing to worry modifying your
hook every time you upgrade Liferay. Here is an example that customizes the search
portlet to remove the ability to a search provider in the browser:

<liferay-util:buffer var="html">

<liferay-util:include page="/html/portlet/search/search.portal.jsp" />

</liferay-util:buffer>

<%

int x = html.indexOf("<div class=\"add-search-provider\">");

int y = html.indexOf("</div>", x);

if (x != -1) {

html = StringUtil.remove(html, html.substring(x, y + 6),
StringPool.BLANK);

}

%>

<%= html %>

Since this technique involves String manipulation it is mainly useful when the
amount of changes desired are small.

 Performing a Custom Action
Another common use of hooks is to perform custom actions on certain common

portal events, such as user log in or system startup. The actions that are performed on
each of these events are defined in portal.properties, which means that in order to
create a custom action we will also need to extend this file. Fortunately, this is
extremely easy using a hook.

First, create the directory example-hook/docroot/WEB-INF/src/com/sample/hook,
and create the file LoginAction.java inside it with the following content:

package com.sample.hook;

import com.liferay.portal.kernel.events.Action;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class LoginAction extends Action {

public void run(HttpServletRequest req, HttpServletResponse res) {

System.out.println("## My custom login action");

}

}

Next, create the file portal.properties inside example-hook/docroot/WEB-
INF/src with the following content:

login.events.pre=com.sample.hook.LoginAction

Performing a Custom Action 49

Hooks

Finally, edit liferay-hook.xml inside example-hook/docroot/WEB-INF and add the
following line above <custom-jsp-dir>:

<portal-properties>portal.properties</portal-properties>

Deploy your hook again and wait for it to complete. Then log out and back in, and
you should see our custom message in the terminal window running Liferay.

There are several other events that you can define custom actions for using
hooks. Some of these actions must extend from
com.liferay.portal.kernel.events.Action, while others must extend
com.liferay.portal.struts.SimpleAction. For more information on these events, see
the portal.properties configuration file for your version of Liferay in:
http://www.liferay.com/community/wiki/-/wiki/Main/Portal+Properties

 Extending and Overriding portal.properties
In our hook, we modified the login.events.pre portal property. Since this

property accepts a list of values, our value was appended to the existing values. It is
safe to modify these portal properties from multiple hooks, and they will not interfere
with one another. Some portal properties only accept a single value, such as the
terms.of.use.required property, which can be either true or false. You should only
modify these properties from one hook, otherwise Liferay will not know which value
to use. You can determine which type a particular property is by looking in
portal.properties.

Not all portal properties can be overridden in a hook. A complete list of the
available properties can be found in the DTD for liferay-hook.xml in the definitions
folder of the Liferay source code. In addition to defining custom actions, hooks can
also override portal properties to define model listeners, validators, generators, and
content sanitizers.

 Overriding a Portal Service
All of the functionality provided by Liferay is encapsulated behind a layer of

services that is accessed from the frontend layer (the portlets). One of the benefits of
this architecture is that it is possible to change how a core portlet of Liferay behaves
without changing the portlet itself, customizing the backend services that it uses.
This section explains how to do that from a hook plugin.

Liferay automatically generates dummy wrapper classes for all of its services, for
example UserLocalServiceWrapper is created as a wrapper of the UserLocalService
that is used to add, remove and retrieve user accounts. To modify the functionality of
UserLocalService from our hook, all we have to do is create a class that extends from
UserLocalServiceWrapper, override some of its methods, and then instruct Liferay to
use our class instead of the original.

First, inside example-hook/docroot/WEB-INF/src/com/sample/hook create a new
file called MyUserLocalServiceImpl.java with the following content:

package com.sample.hook;

 50 Overriding a Portal Service

http://www.liferay.com/community/wiki/-/wiki/Main/Portal+Properties

Hooks

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.exception.SystemException;

import com.liferay.portal.model.User;

import com.liferay.portal.service.UserLocalService;

import com.liferay.portal.service.UserLocalServiceWrapper;

public class MyUserLocalServiceImpl extends UserLocalServiceWrapper {

public MyUserLocalServiceImpl(UserLocalService userLocalService) {

super(userLocalService);

}

public User getUserById(long userId)

throws PortalException, SystemException {

System.out.println(

"## MyUserLocalServiceImpl.getUserById(" + userId + ")");

return super.getUserById(userId);

}

}

Tip: Note that the wrapper class (MyUserLocalServiceImpl in this example)
will be loaded in the hook's class loader. That means that it will have
access to any other class included within the same WAR file, but it won't
have access to internal classes of Liferay.

Next, edit liferay-hook.xml inside example-hook/docroot/WEB-INF and add the
following after </custom-jsp-dir>:

<service>

<service-type>com.liferay.portal.service.UserLocalService</service-type>

<service-impl>com.sample.hook.MyUserLocalServiceImpl</service-impl>

</service>

Redeploy your hook, then refresh your browser. In the terminal window
containing Liferay you should see the messages printed by our hook.

Here are some other services of Liferay that you may need to extend to meet
advanced requirements:

• OrganizationLocalService: add, delete and retrieve organizations. Also
assign users to organizations and retrieve the list of organizations of a given
user.

• GroupLocalService: add, delete and retrieve communities.

• LayoutLocalService: add, delete, retrieve and manage pages of communities,
organizations and users.

For a complete list of the services available and the methods of each of them

Overriding a Portal Service 51

Hooks

check the javadocs distributed with your version of Liferay.

 Overriding a Language.properties File
In addition to the three capabilities of hooks already discussed, it is also possible

to override Language.properties files from a hook, allowing you to change any of the
messages displayed by Liferay to suit your needs. The process is extremely similar to
any of the ones we have just described. All you need to do is to create a Language file
for the language whose messages you want to customize and then refer to it from the
liferay-hook.xml. For example to override the translations to Spanish and French the
following two lines would be added to the file:

<hook>

...

 <language-properties>content/Language_es.properties</language-properties>

 <language-properties>content/Language_fr.properties</language-properties>
...

</hook>

 52 Overriding a Language.properties File

6. 6. EEXTXT PLUGINSPLUGINS

Ext plugins provide the most powerful method of extending Liferay. This comes
with some tradeoffs in complexity, and so Ext plugins are designed to be used only in
special scenarios in which all other plugin types cannot meet the needs of the project.

Before deciding to use an Ext plugin it's important to understand the costs of
using such a powerful tool. The main one is the cost in terms of maintenance. Because
Ext plugins allow using internal APIs or even overwriting files provided in the Liferay
core, it's necessary to review all the changes done when updating to a new version of
Liferay (even if it's a maintenance version or a service pack). Also, unlike the other
types of plugins, Ext plugins require the server to be restarted after deployment, as
well as requiring additional steps when deploying or redeploying to production
systems.

The main use cases in which an Ext plugin may be needed are:

• Customizing portal.properties that are not supported by Hook
Plugins

• Customizing Struts Actions

• Providing custom implementations for any of the Liferay beans
declared in Liferay's Spring files (use service wrappers from a hook
instead if possible)

• Adding JSPs that are referenced from portal properties that can only be
changed from an ext plugin (be sure to check if the property can be
modified from a hook plugin before doing this)

• Direct overwriting of a class (not recommended unless it's strictly
necessary)

Ext plugins

 Creating an Ext plugin
Ext plugins are stored within the ext directory of the Plugins SDK. Navigate to

this directory in a terminal and enter the following command to create a new Ext
plugin (Linux and Mac OS X):

./create.sh example "Example"

On Windows enter the following instead:

create.bat example "Example"

You should get a BUILD SUCCESSFUL message from Ant, and there will now be a
new folder inside of the ext folder in your Plugins SDK. Notice that the Plugins SDK
automatically appends “-ext” to the project name when creating this folder.

Once the target has been executed successfully you will find a new folder called
example-ext with the following structure:

/ext-example/

 /docroot/

 /WEB-INF/

 /sql/

 /ext-impl/

 /src/

 /ext-lib/

 /global/

 /portal/

 /ext-service/

 /src/

 /ext-util-bridges/

 /src/

 /ext-util-java/

 /src/

 /ext-util-taglib/

 /src/

 /ext-web/

The most significant directories in this structure are the ones inside the
docroot/WEB-INF directory. In particular you should be familiar with the following
directories:

• ext-impl/src: Contains the portal-ext.properties configuration file,
custom implementation classes, and in advanced scenarios, classes that
override core classes within portal-impl.jar.

• ext-lib/global: Place here any libraries that should be copied to the
global classloader of the application server upon deployment of the ext
plugin.

• ext-lib/portal: Place here any libraries that should be copied inside

 54 Creating an Ext plugin

Ext plugins

Liferay's main application. Usually these libraries are needed because
they are invoked from the classes added within ext-impl/src.

• ext-service/src: Place here any classes that should be available to
other plugins. When using Service Builder, it will put the interfaces of
each service here. Also in advanced scenarios, this directory will
contain classes that overwrite the classes of portal-service.jar.

• ext-web/docroot: Contains configuration files for the web application,
including WEB-INF/struts-config-ext.xml which will allow
customizing Liferay's own core struts actions. You can also place any
JSPs needed by your customizations here.

• Other: ext-util-bridges, ext-util-java and ext-util-taglib are only
needed in advanced scenarios in which you need to customize the
classes of three libraries provided with Liferay: util-bridges.jar,
util-java.jar and util-taglib.jar respectively. In most scenarios you
can just ignore these directories.

By default, several files are added to the plugin. Here are the most significant
ones:

• Inside docroot/WEB-INF/ext-impl/src:

◦ portal-ext.properties: this file can be used to overwrite any
configuration property of Liferay, even those that cannot be
overridden by a hook plugin (which is always preferred when
possible). Note that if this file is included it will be read instead of
any other portal-ext.properties in the application server.
Because of that you may need to copy into it the properties related
to the database connection, file system patches, etc.

• Inside docroot/WEB-INF/ext-web/docroot/WEB-INF:

◦ portlet-ext.xml: Can be used to overwrite the definition of a
Liferay portlet. In order to do this, copy the complete definition of
the desired portlet from portlet-custom.xml within Liferay's
source code and then apply the necessary changes.

◦ liferay-portlet-ext.xml: Similar to the file above, but for the
additional definition elements that are specific to Liferay. In order
to override it, copy the complete definition of the desired portlet
from liferay-portlet.xml within Liferay's source code and then
apply the necessary changes.

◦ struts-config-ext.xml and tiles-defs-ext.xml: Can be used to
customize the struts actions used by Liferay's core portlets.

Tip: after creating an Ext plugin, remove all of the files added by default
that are not necessary for the extension. This is important because Liferay
keeps track of the files deployed by each Ext plugin and it won't allow
deploying two Ext plugins if they override the same file to avoid collisions.
By removing any files not really necessary from an ext plugin it will be

easier to use along with other Ext plugins.

Creating an Ext plugin 55

Ext plugins

 Developing an Ext plugin
Developing an Ext plugin is slightly different than working with other plugin

types. The main reason for the difference is that an Ext plugin when deployed will
make changes to the Liferay web application itself, instead of staying as a separate
component that can be removed at any time. It's important to remember that once an
Ext plugin has been deployed, some of its files are copied inside the Liferay installation, so the
only way to remove its changes is to redeploy an unmodified Liferay application again.

The Plugins SDK contains several Ant targets that help with the task of deploying
and redeploying during the development phase. In order to do this it requires a .zip
file of a Tomcat 6 based Liferay bundle. The Ant targets will unzip and clean up this
installation whenever needed to guarantee that any change done to the Ext plugin
during development is properly applied and previous changes that have been
removed are not left behind. This is part of the added complexity when using Ext
plugins, and so it is recommended to use another plugin type to accomplish your
goals if it is at all possible.

 Set up
Before attempting to deploy an Ext plugin, it's necessary to edit the file build.

{username}.properties in the root folder of the Plugins SDK. If this file doesn't exist
yet you should create it. Substitute {username} with the your user ID on your
computer. Once the file is open, add the following three properties to the file, making
sure the individual paths point to the right locations on your system:

app.server.dir={...}/liferay-portal-6.0.6/tomcat-6.0.26

app.server.zip.name={...}/liferay-portal-tomcat-6.0.6.zip

ext.work.dir={...}/work

app.server.zip.name should point to a .zip with a bundle of Liferay. The
directory denoted by the property ext.work.dir will be used to unzip the bundle as
well as remove it and unzip again as needed. app.server.dir should point to the
Tomcat directory inside the work directory.

For example, if ext.work.dir points to C:\ext-work, and app.server.zip.name
points to C:\files\liferay-portal-tomcat-6.0-${lp.version}.zip, then
app.server.dir should point to C:\ext-work\liferay-portal-${lp.version}\tomcat-
6.0.18.

 Initial deployment
Once the environment is set up, we are ready to start customizing. We'll show the

full process with a simple example, customizing the sections of a user profile. Liferay
allows doing that through the portal-ext.properties configuration file, but we'll be
changing a property that cannot be changed from a hook plugin. In order to make this
change, open the docroot/WEB-INF/ext-impl/src/portal-ext.properties file and
paste the following contents inside:

users.form.update.main=details,password,organizations,communities,roles

This line removes the sections for user groups, pages and categorizations. We

 56 Developing an Ext plugin

Ext plugins

might want to make this change because we don't want them in our portal.

Once we've made this change, we are ready to deploy. Open a terminal window in
your ext/example-ext directory and enter this command:

ant deploy

You should get a BUILD SUCCESSFUL message, which means that your plugin is
now being deployed. If you switch to the terminal window running Liferay and wait
for a few seconds, you should see the message “Extension environment for example-
ext has been applied. You must restart the server and redeploy all other plugins.”
Redeploying all other plugins is not strictly mandatory, but you should do it if some
changes applied through the Ext plugin may affect the deployment process itself.

The ant deploy target builds a .war file with all the changes you have made and
copies them to the auto deploy directory inside the Liferay installation. When the
server starts, it detects the .war file, inspects it, and copies its content to the
appropriate destinations within the deployed and running Liferay inside your
application server. You must now restart your application server.

Once the server has started, log in as an administrator and go to Control Panel ->
Users. Edit an existing user and verify that the right navigation menu only shows the
five sections that were referenced from the users.form.update.main property.

Once we've applied this simple modification to Liferay, we can go ahead with a
slightly more complex customization. This will give us an opportunity to learn the
proper way to redeploy an Ext plugin, which is different from the initial deployment.

For this example we'll customize the details view of the user profile. We could do
that just by overwriting its JSP, but this time we'll use a more powerful method which
also allows adding new sections or even merging the existing ones. Liferay allows
referring to custom sections from the portal-ext.properties and implementing
them just by creating a JSP. In our case we'll modify the property
users.form.update.main once again to set the following value:

users.form.update.main=basic,password,organizations,communities,roles

That is, we removed the section details and added a new custom one called basic.
When Liferay's user administration reads this property it looks for the
implementation of each section based on the following conventions:

• The section should be implemented in a JSP inside the directory:
html/portlet/enterprise_admin/user

• The name of the JSP should be like the name of the section plus the .jsp
extension. There is one exception. If the section name has a dash sign
(“-”), it will be converted to an underscore sign (“_”). For example, if
the section is called my-info, the JSP should be named my_info.jsp. This
is done to comply to common standards of JSP naming.

• The name of the section that will be shown to the user will be looked for
in the language bundles. When using a key/value that is not already
among the ones included with Liferay, you should add it to the
Language-ext.properties and each of the language variants for which
we want to provide a translation. Within the Ext plugin these files

Developing an Ext plugin 57

Ext plugins

should be placed within ext-impl/src.

In our example, we'll need to create a file within the Ext plugin in the following
path:

ext-web/docroot/html/portlet/enterprise_admin/user/basic.jsp

For the contents of the file, you can write them from scratch or make a copy of
the details.jsp file from Liferay's source code and modify from there. In this case
we've decided to do the latter and then remove some fields to simplify the creation of
a user. The result is this:

<%@ include file="/html/portlet/enterprise_admin/init.jsp" %>

<%

User selUser = (User)request.getAttribute("user.selUser");

%>

<liferay-ui:error-marker key="errorSection" value="details" />

<aui:model-context bean="<%= selUser %>" model="<%= User.class %>" />

<h3><liferay-ui:message key="details" /></h3>

<aui:fieldset column="<%= true %>" cssClass="aui-w50">

<liferay-ui:error exception="<%= DuplicateUserScreenNameException.class
%>"

 message="the-screen-name-you-requested-is-already-
taken" />

<liferay-ui:error exception="<%= ReservedUserScreenNameException.class
%>"

 message="the-screen-name-you-requested-is-
reserved" />

<liferay-ui:error exception="<%= UserScreenNameException.class %>"

 message="please-enter-a-valid-screen-name" />

<aui:input name="screenName" />

<liferay-ui:error exception="<%=
DuplicateUserEmailAddressException.class %>"

 message="the-email-address-you-requested-is-already-
taken" />

<liferay-ui:error exception="<%= ReservedUserEmailAddressException.class
%>"

 message="the-email-address-you-requested-is-reserved"
/>

<liferay-ui:error exception="<%= UserEmailAddressException.class %>"

 message="please-enter-a-valid-email-address" />

<aui:input name="emailAddress" />

<liferay-ui:error exception="<%= ContactFirstNameException.class %>"

 58 Developing an Ext plugin

Ext plugins

 message="please-enter-a-valid-first-name" />

<liferay-ui:error exception="<%= ContactFullNameException.class %>" m

 essage="please-enter-a-valid-first-middle-and-last-
name" />

<aui:input name="firstName" />

<liferay-ui:error exception="<%= ContactLastNameException.class %>"

 message="please-enter-a-valid-last-name" />

<aui:input name="lastName" />

</aui:fieldset>

In our case, we don't need to add a new key to Language-ext.properties, because
“basic” is already included in Liferay's language bundle. We are ready to redeploy.

 Redeployment
So far, the process has been very similar to that of other plugin types. The

differences start when redeploying an Ext plugin that has already been deployed. As
mentioned earlier, when the plugin was first deployed some of its files were copied
within the Liferay installation. After making any change to the plugin the recommended
steps to redeploy are first to stop the application server, and then to execute the
following ant targets:

ant clean-app-server direct-deploy

These ant targets first remove the work bundle (unzipping the one that was
referred to through build.{username}.properties), and then deploy all the changes
directly to the appropriate directories. The direct-deploy target is faster because the
changes are applied directly., while the Liferay server does it on start up if you use
the deploy target. For that reason it is usually preferred during development.

You can deploy several Ext plugins to the same server, but you will have to
redeploy each of them after executing the clean-app-server target.

Once you have finished the development of the plugin you can execute the
following ant target to generate a .war file for distribution:

ant war

The file will be available within the dist directory in the root of the plugins SDK.

 Advanced customization techniques
This section covers additional customization techniques that are possible

through an Ext plugin. As mentioned above, you can change almost everything within
Liferay when using the Ext plugin, therefore be careful when using such a powerful
tool.

Always keep in mind that with ever new Liferay version, implementation classes
may have changed. Thus if you've changed Liferay source code directly, you may have
to merge your changes into the newer Liferay version. General approach for
minimizing conflicts is – don't change anything, only extend.

Developing an Ext plugin 59

Ext plugins

The alternative is to extend the class you want to change and override methods
needed. Then use some of Liferay's configuration files to reference your subclass as a
replacement of the original class.

This and other advanced techniques are described in detail in the following
sections.

 Advanced configuration files

Liferay uses several internal configuration files for easier maintenance and also
to configure the libraries and frameworks it depends on, such as Struts or Spring. For
advanced customization needs it may be useful to override the configuration
specified in these files, so Liferay provides a clean way to do that from an Ext plugin
without modifying the original files.

Next is a list of all of these files, along with a description and a reference to the
original file in the path where they can be found in the source code of Liferay (you
may need to look at them for reference):

• ext-impl/src/META-INF/ext-model-hints.xml

◦ Description: This file allows overwriting the default properties of
the fields of the data models used by Liferay's core portlets. These
properties determine how the form to create or edit each model is
rendered.

◦ Original file in Liferay: portal-impl/src/META-INF/portal-model-
hints.xml

• ext-impl/src/META-INF/ext-spring.xml

◦ Description: This file allows overwriting the Spring configuration
used by Liferay and any of its core portlets. The most common
usage is to configure specific datasources or to swap the
implementation of a given service with a custom one.

◦ Original files in Liferay: portal-impl/src/META-INF/*-spring.xml

• ext-impl/src/content/Language-ext_*.properties

◦ Description: This file allows overwriting the value of any key used
by Liferay's UI to support I18N.

◦ Original file in Liferay: portal-impl/src/content/Language-
*.properties

• ext-impl/src/META-INF/portal-log4j-ext.xml

◦ Description: This file allows overwriting the log4j configuration.
The most common usage is to increase or decrease the log level of a
given package or class to obtain more information or hide
unneeded information from the logs respectively.

◦ Original file in Liferay: portal-impl/src/META-INF/portal-log4j.xml

• ext-

 60 Developing an Ext plugin

Ext plugins

impl/src/com/liferay/portal/jcr/jackrabbit/dependencies/repository-
ext.xml

◦ Description: This file allows overwriting the configuration of the
Jackrabbit repository. Refer to the Jackrabbit configuration
documentation for details
(http://jackrabbit.apache.org/jackrabbit- configuration.html)

◦ Original file in Liferay: portal-
impl/src/com/liferay/portal/jcr/jackrabbit/dependencies/reposit
ory.xml

• ext-web/docroot/WEB-INF/portlet-ext.xml

◦ Description: This file allows overwriting the declaration of the core
portlets included in Liferay. The most common usage is to change
the init parameters or the roles specified.

◦ Original file in Liferay: portal-web/docroot/WEB-INF/portlet-
custom.xml

• ext-web/docroot/WEB-INF/liferay-portlet-ext.xml

◦ Description: This file allows overwriting the Liferay-specific
declaration of the core portlets included in Liferay. Refer to the
liferay-portlet-app_6_0_0.dtd file for details on all the available
options. Use this file with care since the code of the portlets may be
assuming some of these options to be set to certain values.

◦ Original file in Liferay: portal-web/docroot/WEB-INF/liferay-
portlet.xml

• ext-web/docroot/WEB-INF/liferay-display.xml

◦ Description: This file allows overwriting the portlets that will be
shown in the “Add application” pop-up and the categories in which
they'll be organized. The most common usage is to change the
categorization, hide some portlets or make some Control Panel
portlets available to be added to a page.

◦ Original file in Liferay: portal-web/docroot/WEB-INF/liferay-
display.xml

• ext-web/docroot/WEB-INF/liferay-layout-templates-ext.xml

◦ Description: This file allows specifying custom template files for
each of the layout templates provided by default with Liferay. You
should not need to do this except for very advanced needs.

◦ Original file in Liferay: portal-web/docroot/WEB-INF/liferay-
layout-templates.xml

• ext-web/docroot/WEB-INF/liferay-look-and-feel-ext.xml

◦ Description: This file allows changing the properties of the default
themes provided by default with Liferay. You should not need to do

Developing an Ext plugin 61

http://jackrabbit.apache.org/jackrabbit-configuration.html
http://jackrabbit.apache.org/jackrabbit-configuration.html

Ext plugins

this except for very advanced needs.

◦ Original file in Liferay: portal-web/docroot/WEB-INF/liferay-look-
and-feel.xml

 Changing the API of a core service

One advanced customization need that appears in some scenarios is to change the
API of a method provided by one of Liferay's services, for example the
UserLocalService.

Is it possible to do that? The short answer is no. The long answer is that you can
but it will require modifying Liferay's source code directly and make manual changes
to quite a few files. The good news is that there is a better alternative to achieve the
end goal.

The best way to extend an existing service is to create a complementary custom
service, for example a MyUserLocalService that includes all the new methods. Your
custom code can invoke this service instead of the default service and the
implementation of your service can invoke the original service as needed.

Note that this technique does not require an Ext plugin since it can be done from
portlet plugins. In fact, using service-builder for Ext plugin is deprecated but is
supported for migration from the old extension environment.

In some advanced circumstances it's desired to change the implementation of the
original service to call your custom one, which can only be done from an Ext plugin.
To achieve this, override spring definition for UserLocalServiceUtil in ext-spring.xml
and point it to your MyUserLocalServiceImpl (instead of UserLocalServiceImpl). This
way both MyUserLocalServiceUtil and UserLocalServiceUtil will use the same spring
bean: your new implementation.

 Replacing core classes in portal-impl

If you really need to change core portal-impl class and this class that cannot be
replaced in any configuration file, then best way to avoid conflicts and easily merge
with a new portal version is to:

1. Rename original class (e.g. DeployUtil → MyDeployUtil)

2. Create new subclass with old name (e.g DeployUtil extends
MyDeployUtil)

3. Override methods you need to change

4. Delegate static methods

5. Use logger with appropriate class name for both classes (e.g. DeployUtil)

This strategy will help you determine what you will need to merge in the future
when a new version of Liferay is released.

 62 Developing an Ext plugin

Ext plugins

Tip: This is a very advanced technique that may have a high impact on the
maintainability of your code, especially if abused. Try to look for
alternatives and if you confirm that this is your only alternative try to
apply only for the short term and get in touch with Liferay's developers to
apply the necessary changes to the product source code.

 Licencing and Contributing

Liferay Portal is Open Source software licensed under the LGPL 2.1 license
(http://www.gnu.org/licenses/lgpl-2.1.html). If you reuse any code snippet and
redistribute it either publicly or to an specific customer, you need to make sure that
those modifications are compliant with this license. A common way to do this is to
make the source code of your modifications available to the community under the
same license, but make sure to read the license text yourself to find the best option
that fits your needs.

If the goal of the changes was to fix a bug or to make an improvement that could
be of interest to a broader audience, consider contributing it back to the project. That
would benefit all other users of the product and also would be good for you since you
won't have to maintain the changes when new versions of Liferay come out. You can
notify Liferay of bugs or improvements in issues.liferay.com. There is also a wiki page
with instructions on how to contribute to Liferay:

http://www.liferay.com/community/wiki/-/wiki/Main/Contributing

 Deploying in production
In production or pre-production environments it's often not possible to use Ant

to deploy web applications. Also, some application servers such as WebSphere or
Weblogic have their own deployment tools and it isn't possible to use Liferay's
autodeploy process. This section describes two methods for deploying and
redeploying Ext plugins in production that can be used in each of these scenarios.

 Method 1: Redeploying Liferay's web application
This method can be used in any application server that supports auto deploy,

such as Tomcat or JBoss. Its main benefit is that the only artifact that needs to be
transferred to the production system is the .war file which the Ext plugin produced
using the ant war target, which is usually a small file. Here are the steps that need to
be executed on the server:

1. Redeploy Liferay. To do this, follow the same steps you used when first
deploying Liferay on the app server. If you are using a bundle, you can
just unzip the bundle again. If you've installed Liferay manually on an
existing application server, you'll need to redeploy the .war file and
copy the global libraries to the appropriate directory within the
application server. If this is the first time the Ext plugin is deployed,
you can skip this step.

2. Copy the Ext plugin .war into the auto deploy directory. For a bundled

Deploying in production 63

http://www.liferay.com/community/wiki/-/wiki/Main/Contributing
http://www.gnu.org/licenses/lgpl-2.1.html

Ext plugins

Liferay distribution, the deploy folder is in the root folder.

3. Once the Ext plugin is detected and deployed by Liferay, restart the
Liferay server.

 Method 2: Generate an aggregated WAR file
This method can be used for application servers that do not support autodeploy,

such as WebSphere or Weblogic. Its main benefit is that all Ext plugins are merged
before deployment to production, so a single .war file will contain Liferay plus the
changes from one or more Ext plugins. Before deploying the .war file, you'll need to
copy the dependency .jars for both Liferay and the Ext plugin to the global
application server class loader in the production server. This location varies from
server to server; please see the Liferay Portal Administrator's Guide for further details
for your application server.

To create the aggregated .war file, deploy the Ext plugin first to the Liferay
bundle you are using in your development environment (using for example, Tomcat).
Once it's deployed, restart the server so that the plugin is fully deploy and shut it
down again. Now the aggregated file is ready. Create a .war file by zipping the
webapps/ROOT folder of Tomcat. Also, copy all the libraries from the lib/ext directory
of Tomcat that are associated to all the Ext plugins to your application server's global
classpath, as noted above. These steps will be automated with Ant targets in the next
version of Liferay, but for now, they need to be done manually.

Once you have the aggregated .war file follow these steps on the server:

1. Redeploy Liferay using the aggregated WAR file.

2. Stop the server and copy the new version of the global libraries to the
appropriate directory in the application server.

 64 Deploying in production

 Migrating old extension environments
Ext plugins have been created as an evolution of the extension environment provided in

Liferay 5.2 and previous versions of Liferay. Because of this a common need for projects
upgrading from previous versions might be to migrate Extension environments into Ext
plugins. The good news is that this task is automated and thus relatively easy.

Tip: When migrating an extension environment, it's worth considering if all or at least
some of its features can be moved into other types of plugins such as portlets and
hooks. The benefit of using portlets and hooks is that since they are focused on
specific goals they are easier to learn. Additionally they are cheaper to maintain since
they often require fewer changes when upgrading to a new version of Liferay.

The process of migrating consists of executing a target within the ext directory from
Plugins SDK, pointing to the old extension environment and naming the new plugin:

ant upgrade-ext -Dext.dir=/projects/liferay/ext -Dext.name=my-ext
-Dext.display.name="My Ext"

Here is a description of the three parameters used:

• ext.dir is a command line argument to the location of the old Extension
Environment.

• ext.name is the name of the Ext plugin that you want to create

• ext.display.name is the display name

After executing the target you should see the logs of several copy operations that will take
files from the extension environment and copy them into the equivalent directory within the
Ext plugin (read the section “Creating an Ext plugin” for an explanation of the main directories
within the plugin).

When the migration process is complete, some additional tasks will be needed to upgrade
the code to the new version of Liferay. Some of the most typical tasks are:

• Review the uses of Liferay's APIs and adapt them accordingly.

• Review the changes to the JSPs and merge your changes into the JSPs of the new
Liferay version.

• When using Service Builder you will need to run ant build-service again. It's
also recommended to consider moving this code to a portlet plugin, because it is
now as powerful and allows for greater modularity and maintainability.

• If you've implemented portlets in Ext, migrate them to portlet plugins, as this
capability is deprecated and is not guaranteed to be available in future releases.

 Conclusions
Ext plugins are a very powerful way of extending Liferay. There are no limits in what can

be customized using them and for that reason they have to be used carefully. If you find
yourself using an Ext plugin, verify if all or part of the desired functionality can be
implemented through portlets, hooks or web plugins instead.

If you really need to use an Ext plugin make it as small as possible and make sure you
follow the instructions in this guide carefully to avoid issues.

7. 7. LLIFERAYIFERAY T TOOLSOOLS

Liferay's developers use a variety of tools to develop the product and as a
consequence of that they have always tried hard to allow other developers to use any
tools they wanted for their own development. Because of this you can develop portals
based on Liferay with complex IDEs Eclipse, Netbeans or IntelliJ Idea or just use text
editors such as Notepad. You can write your persistence layer directly using SQL and
JDBC or you can use advanced object-relational mapping libraries such as hibernate
or iBatis.

But while being agnostic is great, specially for more experienced developers who
can reuse their existing knowledge, it can be overwhelming for newcomers. For that
reason Liferay also offers specific tools that can be used to ease the learning curve
when developing portlets with Liferay. Two of the most significant of these tools are
Liferay IDE, a fully featured Integrated Development Environment based on Eclipse,
and Service Builder, a code generator that encapsulates the complexity of Hibernate
and Spring to get you started in minutes. Let's learn more about each of them.

 Liferay IDE
Liferay IDE is an extension for the Eclipse platform that supports development of

plugin projects for the Liferay Portal platform. It is available as a set of Eclipse plugins
installable from an update-site. The latest version supports developing 5 Liferay
plugin types: portlets, hooks, layout templates, themes, and ext plugins. Liferay IDE
requires the Eclipse Java EE developer package using either Galileo or Helios versions.

The first two sections below show how to install and set-up Liferay IDE within
your environment. If you are using a copy of Liferay Developer Studio, which comes
with Liferay Portal Enterprise Edition, you can skip directly to the section titled
“Testing the Liferay portal server” since it comes already preconfigured.

Liferay Tools

 Installation
This section is a detailed guide to install Liferay IDE.

 Requirements

• Java 5.0 JRE

• Eclipse Helios (3.6.0) IDE for Java EE Developers OR Eclipse Galileo SR2 -
IDE for Java EE Developers

 Installation steps

1. Install Eclipse Helios or Galileo (unzip download file from above)

2. Run eclipse.exe

3. When eclipse opens, go to Help > Install New Software...

4. Click the "Add..." button to open Add Site dialog

5. Type in “Liferay IDE” for name and as the location use one of the following
URLs:

• For Eclipse Helios:

 http://releases.liferay.com/tools/ide/eclipse/helios/stable/

 68 Liferay IDE

http://releases.liferay.com/tools/ide/eclipse/helios/stable/
http://eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/galileosr2
http://eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/galileosr2
http://eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliosr

Liferay Tools

• For Eclipse Galileo:

http://releases.liferay.com/tools/ide/eclipse/galileo/stable/

6. Select OK

7. Select the Liferay IDE site from the combo selection box.

8. When the table refreshes you should see Liferay Tooling category and one
entry for Liferay IDE feature, select the checkbox to install the feature.

9. Click Next and then click Finish to begin the install

10. (Note) If you are using Galileo and before you click Finish you will see several
Mylyn features that need to be installed as well, that is expected, as there has been a
Mylyn update since the Galileo SR2 release so Mylyn will be updated along side of the
Liferay IDE installation.

Liferay IDE 69

http://releases.liferay.com/tools/ide/eclipse/galileo/stable/

Liferay Tools

11. After plugins download and install you will have to accept that the content is
unsigned and then restart eclipse.

12. After you restart, go to Help > About Eclipse and you should see a Icon badge
for Liferay IDE that shows you have it properly installed.

 70 Liferay IDE

Liferay Tools

Alternative installation

5a. Instead of typing in a URL, you can download the the archived update site
from this link liferay-ide-eclipse-updatesite-1.0.1.zip

5b. In Add Site dialog, click the "Archive" button and browse to the location of
the downloaded zip file.

5c. Installation proceeds normally

 Set up
This section describes the setup necessary to begin doing Liferay development

and testing your developments. In order to do that the instructions below will ask you
to download and install Liferay Portal 6.0 and the Liferay Plugins SDK 6.0, if you
haven't done it yet.

Note: earlier versions of Liferay, such as 5.2 and earlier are not supported by the
Liferay IDE.

 Liferay Plugins SDK Setup

Before you can begin creating new Liferay plugin projects, a Liferay Plugins SDK

Liferay IDE 71

http://sourceforge.net/projects/lportal/files/Liferay%20IDE/liferay-ide-eclipse-updatesite-1.0.1.zip/download/

Liferay Tools

and Liferay Portal must be installed and configured in the IDE.

1. Open Eclipse with Liferay IDE installed.

2. Open Preference page for Liferay > Installed SDKs (Go to Window > Preferences
> Liferay > Installed SDKs)

3. If you have not already downloaded the Liferay Plugins SDK for your portal
version you can download it using the "Download..." button on the Installed SDK page
and it will automatically download and install the latest Liferay Plugins SDK for you.
Alternatively you can download manually any specific version yourself from the
sourceforge.net Liferay downloads page. Look for liferay-plugins-sdk-[version].zip
where [version] is the desired version.

4. If you decided to download it manually, you will need to add your SDK using

 72 Liferay IDE

http://sourceforge.net/projects/lportal/files/

Liferay Tools

the Add button which brings up the Add SDK Dialog. Otherwise skip to step 7.

5. Browse to the location of your Plugins SDK installation.

6. The default name is the name of the directory but you can change it if you
wish.

7. Select OK and you should see your SDK in the list of Installed SDKs.

Note that multiple SDKs can be added to the preferences but you will need to
select at least one SDK to be the default which is represented by the SDK that has the
checkbox selected.

Note: There is a known issue with version 6.0.4. It is recommended that you upgrade
to version 6.0.6 or the latest maintenance version of Liferay 6.0 to avoid it. If that is
impossible in your case, you will need to change your build.properties file. The SDK
plugin assumes you have installed the SDK at the same level (same directory) as the
portal directory. In the line

Liferay IDE 73

Liferay Tools

app.server.dir=${project.dir}/../bundles/app_server_name

of build.properties you have to change bundles with the name of the Liferay portal
installation directory e.g. liferay-portal-6.0.4.

Otherwise, portlets created with the SDK plugin will not be deployed by Ant.

 Liferay Portal Tomcat Runtime / Server Setup

1. In eclipse open the Runtime environments preference page (Go to Window >
Preferences > Server > Runtime environments)

2. Click Add to add a new Liferay runtime and find “Liferay v6.0 (Tomcat 6)”
under the Liferay, Inc. category and click Next.

 74 Liferay IDE

Liferay Tools

3. If you have not already downloaded and installed a copy of the Liferay Portal
Tomcat bundle then you can download the latest Liferay Portal Tomcat bundle by
clicking the "Download and Install..." button within the wizard.

Liferay IDE 75

Liferay Tools

4. If you used the download option you can skip this step, if not, click Browse and
select the location of the liferay-portal-[version] directory.

 76 Liferay IDE

Liferay Tools

 Importing Existing Projects into Liferay IDE
If you have been following the examples of this guide using the Plugins SDK or have
previous plugins developed with it that you want to keep developing with Liferay IDE
then this section is for you. It also shows other options to import. Specifically it shows
how to import from:

1. Existing Liferay projects that are not in Eclipse workspace
2. Projects already in Eclipse but not Liferay IDE (don’t have Liferay facet or

target runtime)
3. Existing Liferay IDE projects from another version of Liferay IDE or workspace

The following subsections describe the steps for each of them with more detail.

 Importing existing Liferay Project from a Plugins SDK

An existing Liferay project that has been created by the Plugins SDK but has not yet
been added to an Eclipse workspace or have not been added to the current workspace
open in Eclipse/Liferay IDE. These projects may or may not have .project or .classpath
files. Whether they do or don’t we will follow the same steps and use the same wizard.
There are two options to create projects from existing sources, depending on whether
you want to create one single project or multiple projects from the same SDK. Let's
see both in detail.

Create one single project from one plugin in an existing sources

This option will create one project for a single plugin that already exists inside a
Plugins SDK.

1. In Eclipse, go to File > New > Project... > Liferay > Liferay Project from
Existing Source

Or you can invoke the same wizard from the Liferay shortcut toolbar.

Liferay IDE 77

Liferay Tools

2. Browse to the location of the project folder. Note: the project folder should

be a sub-directory of one of the plugin types, e.g. portlets, hooks, themes,
etc. If not it will not be able to be imported correctly.

3. Once you select the plugin project folder you should see the plugin type and
SDK version values get updated to correct values. If the SDK is not recent
enough or project type is not correct it will be marked with an error.

4. Next you will need to select a Liferay Runtime to configure on the project
once it is imported. If you don’t have a Liferay Runtime, use the New...
button to create a new Liferay portal runtime (tomcat bundle only
supported).

5. Click Finish to perform the import
6. Read the section below on verifying the success of an import process to

make sure that your project was configured correctly as a Liferay IDE
project.

Create multiple projects for all plugins in a Plugins SDK

This option will transverse an existing Plugins SDK and will allow creating one
project for each of the plugins it finds inside in one single step.

 78 Liferay IDE

Liferay Tools

1. In Eclipse go to File > Import... > Liferay > Liferay Plugin SDK projects

2. First you must select the Plugins SDK that you want to import projects from
in the combo box at the top of the wizard.

3. If you don’t have any SDKs configured in Liferay IDE use the “configure”
link to add a setting that points to the Plugins SDK that you want to import
projects from. To configure a Plugins SDK on the Installed SDKs on the pref
page just click “Add” and then Browse to the directory of the Plugins SDK
root directory.

4. Once you have a configured Plugins SDK, you can select it in the Combo box
and then the SDK location and version will be filled in. If either are not valid
it will be marked with an error.

5. After the SDK is selected the list of projects that are available for import will
be shown in the table. If the projects are already in the workspace they will
be disabled. If the project is available for import it will have a empty
checkbox that can be selected.

Liferay IDE 79

Liferay Tools

6. Select which projects that you wish to import.
7. Select the Liferay runtime that you want to setup for the imported projects.

If you don’t have a liferay runtime you can add one with the “New...”
button.

8. Click Finish.
9. Read the section below on verifying the success of an import process to

make sure that your project was configured correctly as a Liferay IDE
project.

 Importing an existing Eclipse Project that is not aware of the
Liferay IDE

If your project is not in your Eclipse workspace, you can use the first set of steps
above. If your project is already in your workspace (see it in project explorer) but is
not yet a Liferay IDE project, the following steps can be used to convert the project.

1. In Eclipse, right click the eclipse project that you want to convert, select Liferay
> Convert to Liferay plug-in project. If you don’t have a convert action available
it means the project is either already a Liferay IDE project or it is not a faceted
project with Java and Dynamic Web project facets configured and will need to be
configured accordingly.

2. When the convert dialog wizard opens your project should be auto-selected and
the SDK location and SDK version should be auto-detected. If they are not valid
an error message will be displayed.

 80 Liferay IDE

Liferay Tools

3. Select the Liferay runtime that you wish to set on the project. If you don’t have a
Liferay Runtime define use the “New...” action to create one.

4. Click Finish
5. Read the section below on verifying the success of an import process to make

sure that your project was configured correctly as a Liferay IDE project.

 Importing an existing Liferay IDE project

This section describes the steps that can be followed if you have previously created or
converted a Liferay IDE project in your workspace but it is no longer in the current
workspace there are a couple of options for importing this project.

1. Open Liferay IDE, go to File > Import ... > General > Existing Projects into
Workspace

2. Use option Select root directory, then click Browse
3. Select the directory of the previous Liferay IDE project
4. Then in the list of projects you should see the one project you selected
5. Click Finish
6. Read the section below on verifying the success of an import process to

make sure that your project was configured correctly as a Liferay IDE
project.

If you have any errors, it may be that either the SDK name used in that project or the
runtime id used doesn’t exist in your new workspace. You can modify the SDK name
in the Project Properties > Liferay page and you can modify the targeted runtime in
the Project properties > Targeted Runtimes page.

 Verifying that the import has succeeded

Follow the following steps to verify that either of the previous import processes
has been successful.

1. Once the project import process is finished, you should see a new project
inside Eclipse and it should have a “L” overlay image to show its a Liferay
project.

Liferay IDE 81

Liferay Tools

2. Secondly, to make sure the project is now a “Liferay IDE” project is to check
the target runtime project property (right-click project > properties > target
runtimes) and also check the project facets to make sure both Liferay
runtime and Liferay plug-in facets are properly configured.

 82 Liferay IDE

Liferay Tools

5. Once you have selected the Liferay portal directory if it has a bundled JRE then
that bundled JRE will be automatically selected as the JRE to use for launching the
server. However, if there is no bundled JRE (Mac and Linux users) then you will need
to select the JRE to use for launch.

Liferay IDE 83

Liferay Tools

6. Click finish and you should see the Liferay portal runtime in the list of
runtimes in the preference page.

7. Click OK to save the runtime preferences.

8. If you didn't choose to create a server you will need to create one from the
servers view before you can test the server.

 84 Liferay IDE

Liferay Tools

9. Find the Liferay, Inc category and select the Liferay v6 Server and choose the
Liferay v6 Runtime that you had previously created.

Setting the Console Encoding

These steps are not necessary if Liferay is installed on an OS whose encoding is
latin1 or UTF-8 (most US and European OS). Otherwise, it is necessary to specify the
console encoding to properly display console messages.

Liferay IDE 85

Liferay Tools

1. Select "Run" - "Run Configuration..." from the Eclipse menu.

2. Select "Liferay v6.0 Server" from the menu.

3. Select the "Common" tab.

4. In the encoding section, select "Other" and "UTF-8". Select "Apply" - "Close".

Testing the Liferay portal server
1. Go to the servers view and you should see the new server that was created.

right click and choose "Start" or "Debug"

2. You should see messages appear in the Console view and once it starts, the
servers view will update to show that it is "Started" and then, right-click the server
and select the (Liferay Portal > Open Portal Home) action.

 86 Liferay IDE

Liferay Tools

3. The eclipse browser should open to the portal home at http://localhost:8080

Liferay IDE 87

http://localhost:8080/

Liferay Tools

Create a new Liferay plugin Project
1. Now that a SDK and portal server have been configured you can create a new

Liferay plugin project. Go to File > New Project... > Liferay > Liferay plugin Project

 88 Liferay IDE

Liferay Tools

2. In the Liferay Plugin project wizard page, select the SDK and Liferay runtime
and then select the plugin type (portlet is default) and now you can create a new
plugin project, by clicking Finish.

3. If it worked you should see a new plugin project in the package explorer, so you

Liferay IDE 89

Liferay Tools

are ready to begin Plugin Development.

That's all you need to learn about Liferay IDE. At this point take a few minutes to
try out creating plugins of the different types and check how Liferay IDE provides
wizards to help with the most common Liferay development tasks.

 Service Builder
Service Builder is a model-driven code generation tool built by Liferay to

automate the creation of interfaces and classes for database persistence and a service
layer. Service Builder will generate most of the common code needed to implement
find, create, update, and delete operations on the database, allowing you to focus on
the higher level aspects of service design.

The service layer generated by Service Builder, has an implementation class that
is responsible to handle retrieving and storing data classes and adding the necessary
business logic around them. This layer can optionally be composed of two layers, the
local service and the remote service. The local service contains the business logic and
accesses the persistence layer. It can be invoked by client code running in the same
Java Virtual Machine. The remote service usually ads a code to check security and is
meant to be accessible from anywhere over the Internet or your local network.
Service Builder automatically generates the code necessary to allow access to the
remote services using SOAP, JSON and Java RMI.

 Define the Model
The first step in using Service Builder is to define your model classes and their

attributes in a service.xml file. For convenience, we will define the service within the
my-greeting portlet, although it should be placed inside a new portlet. Create a file
named service.xml in portlets/my-greeting-portlet/docroot/WEB-INF inside the
Plugins SDK and add the following content:

<?xml version="1.0"?>

<!DOCTYPE service-builder PUBLIC "-//Liferay//DTD Service Builder 6.0.0//EN"
"http://www.liferay.com/dtd/liferay-service-builder_6_0_0.dtd">

 90 Service Builder

Liferay Tools

<service-builder package-path="com.sample.portlet.library">

<namespace>Library</namespace>

<entity name="Book" local-service="true" remote-service="true">

<!-- PK fields -->

<column name="bookId" type="long" primary="true" />

<!-- Group instance -->

<column name="groupId" type="long" />

<!-- Audit fields -->

<column name="companyId" type="long" />

<column name="userId" type="long" />

<column name="userName" type="String" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

<!-- Other fields -->

<column name="title" type="String" />

</entity>

</service-builder>

 Overview of service.xml

<service-builder package-path="com.sample.portlet.library">

This specifies the package path that the class will generate to. In this example,
classes will generate to WEB-INF/src/com/sample/portlet/library/

<namespace>Library</namespace>

The namespace element must be a unique namespace for this component. Table
names will be prepended with this namepace.

<entity name="Book" local-service="true" remote-service="false">

The entity name is the database table you want to create.

<column name="title" type="String" />

Columns specified in service.xml will be created in the database with a data type
appropriate to the Java type. Accessors will be automatically generated for these
attributes in the model class.

Tip: Always consider adding two long fields called groupId and companyId to your data
models. These two fields will allow your portlet to support the multi-tenancy features
of Liferay so that each community or organization (for each portal instance) can have
its own independent data.

Service Builder 91

Liferay Tools

 Generate the Service
Open a terminal window in your portlets/my-greeting-portlet directory and

enter this command:

ant build-service

The service has been generated successfully when you see “BUILD SUCCESSFUL.”
In the terminal window, you should see that a large number of files have been
generated. An overview of these files is provided below:

• Persistence

◦ BookPersistence - book persistence interface @generated

◦ BookPersistenceImpl - book persistence @generated

◦ BookUtil - book persistence util, instances BookPersistenceImpl
@generated

• Local Service

◦ BookLocalServiceImpl - local service implementation. This is the only
class within the local service that you will be able to modify manually.
Your business logic will be here.

◦ BookLocalService - local service interface @generated

◦ BookLocalServiceBaseImpl - local service base @generated @abstract

◦ BookLocalServiceUtil - local service util, instances
BookLocalServiceImpl @generated

◦ BookLocalServiceWrapper - local service wrapper, wraps
BookLocalServiceImpl @generated

• Remote Service

◦ BookServiceImpl - remove service implementation. Put here the code
that adds additional security checks and invokes the local service.

◦ BookService - remote service interface @generated

◦ BookServiceBaseImpl - remote service base @generated @abstract

◦ BookServiceUtil - remote service util, instances BookServiceImpl
@generated

◦ BookServiceWrapper - remote service wrapper, wraps BookServiceImpl
@generated

◦ BookServiceSoap - soap remote service, proxies BookServiceUtil
@generated

◦ BookSoap - soap book model, similar to BookModelImpl, does not
implement Book @generated

◦ BookServiceHttp - http remote service, proxies BookServiceUtil
@generated

 92 Service Builder

Liferay Tools

◦ BookJSONSerializer - json serializer, converts Book to JSON array
@generated

• Model

◦ BookModel - book base model interface @generated

◦ BookModelImpl - book base model @generated

◦ Book - book model interface @generated

◦ BookImpl - book model implementation. You can use this class to add
additional methods to your model other than the autogenerated field
getters and setters.

◦ BookWrapper - book wrapper, wraps Book @generated

Out of all of these classes only three can be manually modified:
BookLocalServiceImpl, BookServiceImpl and BookImpl.

 Write the Local Service Class
In the file overview above, you will see that BookLocalService is the interface for

the local service. It contains the signatures of every method in
BookLocalServiceBaseImpl and BookLocalServiceImpl.
BookLocalServiceBaseImpl contains a few automatically generated methods
providing common functionality. Since this class is generated, you should never
modify it, or your changes will be overwritten the next time you run Service Builder.
Instead, all custom code should be placed in BookLocalServiceImpl.

Open the following file:

/docroot/WEB-
INF/src/com/sample/portlet/library/service/impl/BookLocalServiceImpl.java

We will be adding the database interaction methods to this service layer class.
Add the following method to the BookLocalServiceImpl class:

public Book addBook(long userId, String title)

throws PortalException, SystemException {

User user = UserUtil.findByPrimaryKey(userId);

Date now = new Date();

long bookId = CounterLocalServiceUtil.increment(Book.class.getName());

Book book = bookPersistence.create(bookId);

book.setTitle(title);

book.setCompanyId(user.getCompanyId());

book.setUserId(user.getUserId());

book.setUserName(user.getFullName());

book.setCreateDate(now);

book.setModifiedDate(now);

book.setTitle(title);

Service Builder 93

Liferay Tools

return bookPersistence.update(book);

}

Before you can use this new method, you must add its signature to the
BookLocalService interface by running service builder again.

Navigate to the root folder of your portlet in the terminal and run:

ant build-service

Service Builder looks through BookLocalServiceImpl and automatically copies
the signatures of each method into the interface. You can now add a new book to the
database by making the following call

BookLocalServiceUtil.addBook(userId, “A new title”);

 Built-In Liferay Services
In addition to the services you create using Service Builder, your portlets may

also access a variety of services built into Liferay. These include UserService,
OrganizationService, GroupService, CompanyService, ImageService, LayoutService,
OrganizationService, PermissionService, UserGroupService, and RoleService. For
more information on these services, see Liferay in Action and Liferay's Javadocs.

 94 Service Builder

8. 8. LLIFERAYIFERAY API APISS ANDAND
FFRAMEWORKSRAMEWORKS

This chapter provides you with a brief overview of several of the essential APIs
and frameworks provided by Liferay to developers. An API is any programing
interface that you can invoke from your own code either directly through a Java
invocation or through web services to perform a certain action. A framework, in this
context, is a set of APIs and configuration that is designed for an specific purpose
such as enhancing your applications with a permission system, with tags, with
categories, comments, etc.

This chapter will keep evolving with more information about the existing APIs
and frameworks and how to use it. So look back for more information often.

 Security and Permissions
JSR-286 (and JSR-168) define simple security scheme using portlet roles and their

mapping to portal roles. On top of that Liferay implements a fine-grained permissions
system, which developers can use to implement access security in their custom
portlets. This section of the document provides an overview of the JSR-286 (JSR-168)
security system, Liferay's permission system, and how to implement them in your
own portlets.

 JSR Portlet Security
The JSR specification defines the means to specify the roles that will be used by

each portlet within its definition in portlet.xml. For example, the Blogs portlet
definition included in Liferay references 3 roles:

<portlet>

<portlet-name>33</portlet-name>

Liferay APIs and Frameworks

<display-name>Blogs</display-name>

<portlet-class>com.liferay.portlet.StrutsPortlet</portlet-class>

<init-param>

<name>view-action</name>

<value>/blogs/view</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

</supports>

<resource-bundle>com.liferay.portlet.StrutsResourceBundle</resource-
bundle>

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

These roles need to be mapped to specific roles within the portal. The reason for
this mapping is to allow the deployer of a portlet to solve conflicts if two portlets from
two different developers use the same role name for different purposes.

Tip: Liferay provides an additional behavior to the roles referenced in the
portlet.xml file using the security-role-ref element. Each of those roles will
be given the permission to “View” those portlets by default. For example, if
you want all users regardless of whether they are logged in or not to be
able to view a certain portlet when it's first added to a page, make sure you

specify the role “Guest” in that list.

In order to do the mapping it is necessary to use portal-specific configuration
files. In the case of Liferay you can define mapping in liferay-portlet.xml. For example
see definition of mapping inside liferay-portlet.xml in portal-web/docroot/WEB-
INF:

<role-mapper>

<role-name>administrator</role-name>

<role-link>Administrator</role-link>

</role-mapper>

<role-mapper>

<role-name>guest</role-name>

<role-link>Guest</role-link>

</role-mapper>

<role-mapper>

<role-name>power-user</role-name>

<role-link>Power User</role-link>

</role-mapper>

 96 Security and Permissions

Liferay APIs and Frameworks

<role-mapper>

<role-name>user</role-name>

<role-link>User</role-link>

</role-mapper>

This means that if a portlet definition references the role “power-user” it will be
mapped to the Liferay role in its database called “Power User”.

In your portlet's code you can then use methods as defined in portlet
specification:

• getRemoteUser ()

• isUserInRole()

• getUserPrincipal ()

For example to check if the current user has the “Power User” role the following code
could be used:

if (renderRequest.isUserInRole(“power-user”)) {

 // ….

}

Note that Liferay doesn't use the isUserInRole() method in any of the portlets
provided by default. Instead it uses Liferay's permission System directly, to achieve
more finegrained security. The next section describes this system and how to use it
in your portlets, so that you can decide which option fits your needs better.

 Liferay's Permission System Overview
Adding permissions to custom portlets consists of four main steps (also known as

DRAC):

1. Define all resources and their permissions.

2. Register all the resources defined in step 1 in the permissions system.
This is also known as “adding resources.”

3. Associate the necessary permissions with resources.

4. Check permission before returning resources.

 Implementing Permissions
Before you can add permissions to a portlet, two critical terms must be defined.

Resource - A generic term for any object represented in the portal. Examples of
resources include portlets (e.g., Message Boards, Calendar, etc.), Java classes (e.g.,
Message Board Topics, Calendar Events, etc.), and files (e.g., documents, images, etc.)

Permission - An action acting on a resource. For example, the view in “viewing
the calendar portlet” is defined as a permission in Liferay.

Keep in mind that permissions for a portlet resource are implemented a little

Security and Permissions 97

Liferay APIs and Frameworks

differently from other resources such as Java classes and files. In each of the
subsections below, the permission implementation for the portlet resource is
explained first, then the model (and file) resource.

The first step in implementing permissions is to define your resources and
permissions. You can see examples of how this is accomplished for the built-in
portlets by checking out a copy of the Liferay source code and looking in the portal-
impl/src/resource-actions directory. For an example of how permissions work in
the context of a portlet plugin, checkout plugins/trunk from the Liferay public
Subversion repository, and look in the portlet sample-permissions-portlet.

Let’s take a look at blogs.xml in portal-impl/src/resource-actions and see how
the blogs portlet defines these resources and actions.

<?xml version="1.0"?>

<resource-action-mapping>

<portlet-resource>

<portlet-name>33</portlet-name>

<permissions>

<supports>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<community-defaults>

<action-key>VIEW</action-key>

</community-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

</permissions>

</portlet-resource>

<model-resource>

<model-name>com.liferay.portlet.blogs</model-name>

<portlet-ref>

<portlet-name>33</portlet-name>

</portlet-ref>

<permissions>

<supports>

<action-key>ADD_ENTRY</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

</supports>

<community-defaults />

<guest-defaults />

 98 Security and Permissions

Liferay APIs and Frameworks

<guest-unsupported>

<action-key>ADD_ENTRY</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

<model-resource>

<model-name>com.liferay.portlet.blogs.model.BlogsEntry</model-name>

<portlet-ref>

<portlet-name>33</portlet-name>

</portlet-ref>

<permissions>

<supports>

<action-key>ADD_DISCUSSION</action-key>

<action-key>DELETE</action-key>

<action-key>DELETE_DISCUSSION</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>UPDATE_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</supports>

<community-defaults>

<action-key>ADD_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</community-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_DISCUSSION</action-key>

<action-key>DELETE</action-key>

<action-key>DELETE_DISCUSSION</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>UPDATE_DISCUSSION</action-key>

</guest-unsupported>

</permissions>

...

</model-resource>

</resource-action-mapping>

Permissions in the blogs portlet are defined at several different levels, coinciding
to the different sections of the XML file. First, in the <portlet-resource> section,
actions and default permissions are defined on the portlet itself. Changes to portlet
level permissions are performed on a per-community basis. The settings here affect
whether users can add the portlet to a page, edit its configuration, or view the portlet
at all, regardless of content. All these actions are defined inside the <supports> tag.
The default portlet-level permissions for members of the community are defined

Security and Permissions 99

Liferay APIs and Frameworks

inside the <community-defaults> tag. In this case, members of a community should be
able to view any blogs in that community. Likewise, default guest permissions are
defined in <guest-defaults>. <guest-unsupported> contains permissions that a guest
may never be granted, even by an administrator. For the blogs portlet, guests can
never be given permission to configure the portlet or access it in the control panel.

The next level of permissions is based on the scope of an individual instance of
the portlet. These permissions are defined in the first <model-resource> section.
Notice that the <model-name> is not the name of an actual Java class, but simply of the
blogs package. This is the recommended convention for permissions that refer to an
instance of the portlet as a whole.

Tip: A “scope” in Liferay is simply a way of specifying how widely the data
from an instance of a portlet is shared. For instance, if I place a blogs
portlet on a page in the guest community, and then place another blogs
portlet on another page in the same community, the two blogs will share
the same set of posts. This is the default or “community-level” scope. If I

then configure one of the two blogs and change its scope to the current page, it will
no longer share content with any of the other blogs in that community. Thus, with
respect to permissions, an “instance” of a blogs portlet could exist on only one page,
or span an entire community.

The difference between the portlet instance permissions defined in this section,
and the portlet permissions in the <portlet-resource> block is subtle, but critical.
You will notice that permissions such as adding an entry or subscribing are defined at
the portlet instance level. This makes it possible to have multiple distinct blogs within
a community, each with different permissions. For instance, a food community could
have one blog that every community member could post recipes to, but also have a
separate blog containing updates and information about the site itself that only
administrators can post to.

After defining the portlet and portlet instance as resources, we move on to define
models within the portlet that also require permissions. The model resource is
surrounded by the <model-resource> tag. Within this tag, we first define the model
name. This must be the fully qualified Java class name of the model. Next we define
the portlet name that this model belongs to under the portlet-ref tag. Though
unlikely, a model can belong to multiple portlets, which you may use multiple
<portlet-name> tags to define. Similar to the portlet resource element, the model
resource element also allows you to define a supported list of actions that require
permission to perform. You must list out all the performable actions that require a
permission check. As you can see for a blog entry, a user must have permission in
order to add comments to an entry, delete an entry, change the permission setting of
an entry, update an entry, or simply to view an entry. The <community-defaults> tag,
the <guest-defaults> tag, and the <guest-unsupported> tag are all similar in meaning
to what’s explained above for a portlet resource.

After defining your permission scheme for your custom portlet, you then need to
tell Liferay the location of this file. For Liferay core, the XML file would normally
reside in portal/portal-impl/classes/resource-actions and a reference to the file
would appear in the default.xml file. For a plugin, you should put the file in a
directory that is in the class path for the project. Then create a properties file for your
portlet (the one in the Sample Permissions Portlet is simply called sample-

 100 Security and Permissions

Liferay APIs and Frameworks

permissions-portlet.properties) and create a property called
resource.actions.configs with a value that points to the the XML file. Below is an
example from the Sample Permissions Portlet:

resource.actions.configs=resource-actions/sample-permissions-portlet.xml

 Permission Algorithms
There are 6 permission algorithms that Liferay has used during time for checking

permissions. Liferay 5 introduced algorithm 5 that is based on RBAC system. Liferay 6
optimized algorithm 5 into version 6, which included important performance
improvements by using a reduced set of database tables.

It's important to note that once a permission algorithm is configured and
resources are created it cannot be changed, or the existing permissions will be lost
(and some system features may fail).

For all new deployments it is strongly recommended to use algorithm 6. For
deployments that were using other algorithms it's recommended to use the migration
tools provided from the Control Panel > Server Administration > Migration.

For more info see permissions.user.check.algorithm option in portal.properties
file.

 Adding a Resource
After defining resources and actions, the next task is to write code that adds

resources into the permissions system. A lot of the logic to add resources is
encapsulated in the ResourceLocalServiceImpl class. So adding resources is as easy as
calling the add resource method in ResourceLocalServiceUtil class.

public void addResources(

String companyId, String groupId, String userId, String name,

String primKey, boolean portletActions,

boolean addCommunityPermissions, boolean addGuestPermissions);

For all the Java objects that require access permission, you need to make sure
that they are added as resources every time a new one is created. For example, every
time a user adds a new entry to her blog, the addResources(…) method is called to add
the new entry to the resource system. Here’s an example of the call from the
BlogsEntryLocalServiceImpl class.

ResourceLocalServiceUtil.addResources(

entry.getCompanyId(), entry.getGroupId(), entry.getUserId(),

BlogsEntry.class.getName(), entry.getPrimaryKey().toString(),

false, addCommunityPermissions, addGuestPermissions);

The parameters companyId, groupId, and userId should be self explanatory. The
name parameter is the fully qualified Java class name for the resource object being
added. The primKey parameter is the primary key of the resource object. As for the
portletActions parameter, set this to true if you’re adding portlet action permissions.
In our example, we set it to false because we’re adding a model resource, which
should be associated with permissions related to the model action defined in

Security and Permissions 101

Liferay APIs and Frameworks

blogs.xml. The addCommunityPermissions and the addGuestPermissions parameters
are inputs from the user. If set to true, ResourceLocalService will then add the
default permissions to the current community group and the guest group for this
resource respectively.

If you would like to provide your user the ability to choose whether to add the
default community permission and the guest permission for the resources within
your custom portlet, Liferay has a custom JSP tag you may use to quickly add that
functionality. Simply insert the <liferay-ui:input-permissions /> tag into the
appropriate JSP and the checkboxes will show up on your JSP. Of course, make sure
the tag is within the appropriate <form> tags.

When removing entities from database it is also good to remove permissions
mapped directly to the entity. To prevent having a lot of dead resources taking up
space in the Resource_ database table, you must remember to remove them from the
Resource_ table when the resource is no longer applicable. To perform this operation
call the deleteResource(…) method in ResourceLocalServiceUtil. Here’s an example
of a blogs entry being removed:

ResourceLocalServiceUtil.deleteResource(

entry.getCompanyId(), BlogsEntry.class.getName(),

Resource.TYPE_CLASS, Resource.SCOPE_INDIVIDUAL,

entry.getPrimaryKey().toString());

Liferay Community Edition 6.0.5 has a known bug
(http://issues.liferay.com/browse/LPS-14135) that causes this method to leave some
data behind in the database. This error does nos affect the latest Enterprise Edition
(6.0.11 and later) and it has also been fixed in the latest release of the Community
Edition (6.0.6 at the time of this writing)

 Adding Permission
On the portlet level, no code needs to be written in order to have the permission

system work for your custom portlet. Your custom portlet will automatically have all
the permission features. If you’ve defined any custom permissions (supported
actions) in your portlet-resource tag, those are automatically added to a list of
permissions and users can readily choose them. Of course, for your custom
permissions to have any value, you’ll need to show or hide certain functionality in
your portlet. You can do that by checking the permission first before performing the
intended functionality.

In order to allow a user to set permissions on the model resources, you will need
to expose the permission interface to the user. This can be done by adding two Liferay
UI tags to your JSP. The first one is the <liferay-security:permissionsURL> tag which
returns a URL that takes the user to the page to configure the permission settings.
The second tag is the <liferay-ui:icon> tag that shows a permission icon to the user.
Below is an example found in the file view_entry_content.jspf.

<liferay-security:permissionsURL

modelResource="<%= BlogsEntry.class.getName() %>"

 102 Security and Permissions

http://issues.liferay.com/browse/LPS-14135

Liferay APIs and Frameworks

modelResourceDescription="<%= entry.getTitle() %>"

resourcePrimKey="<%= entry.getPrimaryKey().toString() %>"

var="entryURL"

/>

<liferay-ui:icon image="permissions" url="<%= entryURL %>" />

The attributes you need to provide to the first tag are modelResource,
modelResourceDescription, resourcePrimKey, and var. The modelResource attribute is
the fully qualified Java object class name. It then gets translated in
Language.properties to a more readable name.

As for the modelResourceDescription attribute, you can pass in anything that best
describes this model instance. In the example, the blogs title was passed in. The
resourcePrimKey attribute is simply the primary key of your model instance. The var
attribute is the variable name this URL String will get assigned to. This variable is
then passed to the <liferay-ui:icon> tag so the permission icon will have the proper
URL link. There’s also an optional attribute redirect that’s available if you want to
override the default behavior of the upper right arrow link. That is all you need to do
to enable users to configure the permission settings for model resources.

 Checking Permissions
The last major step to implementing permission to your custom portlet is to

check permission. This may be done in a couple of places. For example, your business
layer should check for permission before deleting a resource, or your user interface
should hide a button that adds a model (e.g., a calendar event) if the user does not
have permission to do so.

Similar to the other steps, the default permissions for the portlet resources are
automatically checked for you. You do not need to implement anything for your
portlet to discriminate whether a user is allowed to view or to configure the portlet
itself. However, you do need to implement any custom permission you have defined
in your resource-actions XML file. In the blogs portlet example, one custom
supported action is ADD_ENTRY. There are two places in the source code that check
for this permission. The first one is in the file view_entries.jsp. The presence of the
add entry button is contingent on whether the user has permission to add entry (and
also whether the user is in tab one).

<%

boolean showAddEntryButton = tabs1.equals("entries") &&
PortletPermission.contains(permissionChecker, plid, PortletKeys.BLOGS,
ActionKeys.ADD_ENTRY);

%>

The second place that checks for the add entry permission is in the file
BlogsEntryServiceImpl. (Notice the difference between this file and the
BlogsEntryLocalServiceImpl.) In the addEntry(…) method, a call is made to check
whether the incoming request has permission to add entry.

PortletPermission.check(

getPermissionChecker(), plid, PortletKeys.BLOGS,

ActionKeys.ADD_ENTRY);

Security and Permissions 103

Liferay APIs and Frameworks

If the check fails, it throws a PrincipalException and the add entry request
aborts. You’re probably wondering what the PortletPermission and the
PermissionChecker classes do. Let’s take a look at these two classes.

The PermissionChecker class has a method called hasPermission(…) that checks
whether a user making a resource request has the necessary access permission. If the
user is not signed in (guest user), it checks for guest permissions. Otherwise, it checks
for user permissions. This class is available to you in two places. First in your business
logic layer, you can obtain an instance of the PermissionChecker by calling the
getPermissionChecker() method inside your ServiceImpl class. This method is
available because all ServiceImpl (not LocalServiceImpl) classes extend the
PrincipalBean class, which implements the getPermissionChecker() method. The
other place where you can obtain an instance of the PermissionChecker class is in
your JSP files. If your JSP file contains the portlet tag <portlet:defineObjects /> or
includes another JSP file that does, you’ll have an instance of the PermissionChecker
class available to you via the permissionChecker variable. Now that you know what
the PermissionChecker does and how to obtain an instance of it, let’s take a look at
Liferay’s convention in using it.

PortletPermission is a helper class that makes it easy for you to check
permission on portlet resources (as opposed to model resources, covered later). It has
two static methods called check(…) and another two called contains(…). They are all
essentially the same. The two differences between them are:

1. One check(…) method and one contains(…) method take in the portlet
layout ID variable (plid).

2. The check(…) methods throw a new PrincipalException if user does
not have permission, and the contains(…) methods return a boolean
indicating whether user has permission.

The contains(…) methods are meant to be used in your JSP files since they return
a boolean instead of throwing an exception. The check(…) methods are meant to be
called in your business layer (ServiceImpl). Let’s revisit the blogs portlet example
below. (The addEntry(…) method is found in BlogsEntryServiceImpl.)

public BlogsEntry addEntry(

long plid, String title, String content, int displayDateMonth,

int displayDateDay, int displayDateYear, int displayDateHour,

int displayDateMinute, String[] tagsEntries,

boolean addCommunityPermissions, boolean addGuestPermissions,

ThemeDisplay themeDisplay)

throws PortalException, SystemException {

PortletPermissionUtil.check(

getPermissionChecker(), plid, PortletKeys.BLOGS,

ActionKeys.ADD_ENTRY);

return blogsEntryLocalService.addEntry(

getUserId(), plid, title, content, displayDateMonth, displayDateDay,

displayDateYear, displayDateHour, displayDateMinute, tagsEntries,

addCommunityPermissions, addGuestPermissions, themeDisplay);

 104 Security and Permissions

Liferay APIs and Frameworks

}

Before the addEntry(…) method calls BlogsEntryLocalServiceUtil.addEntry(…)
to add a blogs entry, it calls PortletPermission.check(…) to validate user permission.
If the check fails, a PrincipalException is thrown and an entry will not be added.
Note the parameters passed into the method. Again, the getPermissionChecker()
method is readily available in all ServiceImpl classes. The plid variable is passed into
the method by its caller (most likely from a PortletAction class). PortletKeys.BLOGS
is just a static String indicating that the permission check is against the blogs portlet.
ActionKeys.ADD_ENTRY is also a static String to indicate the action requiring the
permission check. You’re encouraged to do likewise with your custom portlet names
and custom action keys.

Whether you need to pass in a portlet layout ID (plid) depends on whether your
custom portlet supports multiple instances. Let’s take a look at the message board
portlet for example. A community may need three separate page layouts, each having
a separate instance of the message board portlet. Only by using the portlet layout ID
will the permission system be able to distinguish the three separate instances of the
message board portlet. This way, permission can be assigned separately in all three
instances. Though in general, most portlets won’t need to use the portlet layout ID in
relation to the permission system.

Since the ServiceImpl class extends the PrincipalBean class, it has access to
information of the current user making the service request. Therefore, the
ServiceImpl class is the ideal place in your business layer to check user permission.
Liferay’s convention is to implement the actual business logic inside the
LocalServiceImpl methods, and then the ServiceImpl calls these methods via the
LocalServiceUtil class after the permission check completes successfully. Your
PortletAction classes should make calls to ServiceUtil (wrapper to ServiceImpl)
guaranteeing that permission is first checked before the request is fulfilled.

Checking model resource permission is very similar to checking portlet resource
permission. The only major difference is that instead of calling methods found in the
PortletPermission class mentioned previously, you need to create your own helper
class to assist you in checking permission. The next section will detail how this is
done.

It is advisable to have a helper class to help check permission on your custom
models. This custom permission class is similar to the PortletPermission class but is
tailored to work with your custom models. While you can implement this class
however you like, we encourage you to model your implementation after the
PortletPermission class, which contains four static methods. Let’s take a look at the
BlogsEntryPermission class.

public class BlogsEntryPermission {

public static void check(

PermissionChecker permissionChecker, long entryId, String
actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, entryId, actionId)) {

Security and Permissions 105

Liferay APIs and Frameworks

throw new PrincipalException();

}

}

public static void check(

PermissionChecker permissionChecker, BlogsEntry entry,

String actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, entry, actionId)) {

throw new PrincipalException();

}

}

public static boolean contains(

PermissionChecker permissionChecker, long entryId, String
actionId)

throws PortalException, SystemException {

BlogsEntry entry = BlogsEntryLocalServiceUtil.getEntry(entryId);

return contains(permissionChecker, entry, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, BlogsEntry entry,

String actionId)

throws PortalException, SystemException {

return permissionChecker.hasPermission(

entry.getGroupId(), BlogsEntry.class.getName(),
entry.getEntryId(),

actionId);

}

}

Again, the two check(…) methods are meant to be called in your business layer,
while the two contains(…) methods can be used in your JSP files. As you can see, it’s
very similar to the PortletPermission class. The two notable differences are:

1. Instead of having the portletId as one of the parameters, the methods in
this custom class take in either an entryId or a BlogsEntry object.

2. None of the methods need to receive the portlet layout ID (plid) as a
parameter. (Your custom portlet may choose to use the portlet layout ID if
need be.)

Let’s see how this class is used in the blogs portlet code.

public BlogsEntry getEntry(String entryId) throws PortalException,
SystemException {

BlogsEntryPermission.check(

 106 Security and Permissions

Liferay APIs and Frameworks

getPermissionChecker(), entryId, ActionKeys.VIEW);

return BlogsEntryLocalServiceUtil.getEntry(entryId);

}

In the BlogsEntryServiceImpl class is a method called getEntry(…). Before this
method returns the blogs entry object, it calls the custom permission helper class to
check permission. If this call doesn’t throw an exception, the entry is retrieved and
returned to its caller.

<c:if test="<%= BlogsEntryPermission.contains(permissionChecker, entry,
ActionKeys.UPDATE) %>">

<portlet:renderURL windowState="<%= WindowState.MAXIMIZED.toString() %>"
var="entryURL">

<portlet:param name="struts_action" value="/blogs/edit_entry" />

<portlet:param name="redirect" value="<%= currentURL %>" />

<portlet:param name="entryId" value="<%= entry.getEntryId() %>" />

</portlet:renderURL>

<liferay-ui:icon image="edit" url="<%= entryURL %>" />

</c:if>

In the view_entry_content.jsp file, the BlogsEntryPermission.contains(…)
method is called to check whether or not to show the edit button. That’s all there is to
it!

Let’s review what we’ve just covered. Implementing permission into your custom
portlet consists of four main steps. First step is to define any custom resources and
actions. Next step is to implement code to register (or add) any newly created
resources such as a BlogsEntry object. The third step is to provide an interface for the
user to configure permission. Lastly, implement code to check permission before
returning resources or showing custom features. Two major resources are portlets
and Java objects. There is not a lot that needs to be done for the portlet resource to
implement the permission system since Liferay Portal has a lot of that work done for
you. You mainly focus your efforts on any custom Java objects you’ve built. You’re
now well equipped to implement security in your custom Liferay portlets!

 Asset Framework
The asset framework provides a set of functionalities that are common to several

different content types. It was initially created to be able to add tags to blog entries,
wiki pages, web content, etc without having to reimplement this same functionality
over and over. Since then, it has grown to add more functionalities and it has been
made possible to use the framework for custom applications even if they are
implemented within a plugin.

The term asset is used as a generic way to refer to any type of content regardless
of whether it's purely text, an external file, a URL, an image, an record in an online
book library, etc. From now on, whenever the word asset is used, think of it as a
generic way to refer to documents, blog entries, bookmarks, wiki pages, etc.

Here are the main functionalities that you will be able to reuse thanks to the asset
framework:

Asset Framework 107

Liferay APIs and Frameworks

• Associate tags to custom content types (new tags will be created
automatically when the author assigns them to the content).

• Associate categories to custom content types (authors will only be allowed
to select from predefined categories within several predefined vocabularies)

• Manage tags from the control panel (including merging tags)

• Manage categories from the control panel (including creating complex
hierachies).

• Keep track of the number of visualizations of an asset.

• Publish your content using the Asset Publisher portlet. Asset Publisher is
able to publish dynamic lists of assets or manually selected lists of assets. It
is also able to show a summary view of an asset and offer a link to the full
view if desired. Because of this it will save you time since for many use cases
it will make it unnecessary to develop custom portlets for your custom
content types.

If these functionalities seem useful for your case, then you might be wondering, what
do I have to do to benefit from them?

The following subsections describe the steps involved in using the asset framework.
The first one is mandatory and consists on letting the framework know whenever one
of your custom content entries is added, updated or deleted. The second part is
optional but can save a lot of time so most developers will probably make use of it. It
consists on using a set of taglibs to provide widgets that allow authors to enter tags
and categories as well as how to show the entered tags and categories along with the
content. The rest of the sections are also optional but offer interesting functionalities
such as how to allow your custom assets to be published through the Asset Publisher.

 Adding, updating and deleting assets

Whenever one of your custom content is created you need to let the asset
framework know. Don't worry, it is simple. You just need to invoke a method of the
asset framework. When invoking this method you will also let the framework know
about the tags and/or categories of the content that was just authored.

All the methods that you will need to invoke are part of the
AssetEntryLocalService. In particular you should access these methods using either
the static methods of AssetLocalServiceUtil or by using an instance of the
AssetEntryLocalService injected by Spring. To make this section simpler we will be
using the former, since it doesn't require any special setup in your application.

The method that you need to invoke when one of your custom content has been
added or updated is the same and is called updateAsset. Here is the full signature:

AssetEntry updateEntry(

long userId, long groupId, String className, long classPK, String
classUuid, long[] categoryIds,

String[] tagNames, boolean visible, Date startDate, Date endDate,

Date publishDate, Date expirationDate, String mimeType, String title,

String description, String summary, String url, int height, int width,

 108 Asset Framework

http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/util/Date.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/util/Date.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/util/Date.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/util/Date.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://cdn.docs.liferay.com/portal/6.0/javadocs/src-html/com/liferay/portlet/asset/service/AssetEntryLocalService.html#line.343
http://cdn.docs.liferay.com/portal/6.0/javadocs/com/liferay/portlet/asset/model/AssetEntry.html

Liferay APIs and Frameworks

Integer priority, boolean sync)

throws PortalException, SystemException

Here is an example invocation to this method extracted out from the blogs portlets
that comes bundled with Liferay:

assetEntryLocalService.updateEntry(

userId, entry.getGroupId(), BlogsEntry.class.getName(),

entry.getEntryId(), entry.getUuid(), assetCategoryIds,

assetTagNames, visible, null, null, entry.getDisplayDate(), null,

ContentTypes.TEXT_HTML, entry.getTitle(), null, summary, null, 0, 0,

null, false);

Here is a quick summary of the most important parameters of this method:

• userId: is the identifier of the user who created the content

• groupId: identifies the scope in which the content has been created. If your
content does not support scopes, you can just pass 0 as the value.

• className: identifies the type of asset. By convention we recommend that it is
the name of the Java class that represents your content type, but you can
actually use any String you want as long as you are sure that it is unique.

• classPK: identifies the specific content being created among any other of the
same type. It is usually the primary key of the table where the custom content
is stored. The classUuid parameter can optionally be used to specify a
secondary identifier that is guaranteed to be unique universally. Having this
type of identifier is specially useful if your contents will be exported and
imported across separate portals.

• assetCategoryIds and assetTagNames: represent the categories and tags that
have been selected by the author of the content. The asset framework will sotre
them for you.

• visible: specifies whether this content should be shown at all by Asset
Publisher.

• title, description and summary: are descriptive fields that will be used by the
Asset Publisher when displaying entries of your content type.

• publishDate and expirationDate: can be optionally specified to let Asset
Publisher know that it should not show the content before a given publication
date of after a given expiration date.

• All other fields are optional and might not make sense in all cases. The sync
parameter should always be false unless you are doing something very
advanced (look at the code if you are really curious).

When one of your custom content is deleted you should also let the Asset
Framework know, to clean up the information stored and also to make sure that the Asset
Publisher doesn't show any information for a content that has been deleted. The signature
of method to do this is:

void deleteEntry(

String className, long classPK)

Asset Framework 109

http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://cdn.docs.liferay.com/portal/6.0/javadocs/src-html/com/liferay/portlet/asset/service/AssetEntryLocalService.html#line.218
http://cdn.docs.liferay.com/portal/6.0/javadocs/com/liferay/portal/kernel/exception/SystemException.html
http://cdn.docs.liferay.com/portal/6.0/javadocs/com/liferay/portal/kernel/exception/PortalException.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html?is-external=true

Liferay APIs and Frameworks

throws PortalException, SystemException

Here is an example invocation extracted again from the blogs portlet:

assetEntryLocalService.deleteEntry(

BlogsEntry.class.getName(), entry.getEntryId());

 Entering and displaying tags and categories

The previous section showed how you can let the asset framework know about
the tags and categories that have been associated with a given asset, but how does a
content author specify such tags and categories?

The answer is that you can choose any method that you prefer, but Liferay
provides a set of JSP tags that you can use to make this task very easy. The following
tags can be used within the form you have created to create your type of content to
allow entering tags or selecting a predefined category:

<label>Tags</label>

<liferay-ui:asset-tags-selector

className="<%= entry.getClass().getName() %>"

classPK="<%= entry.getPrimaryKey() %>"

/>

<label>Categories</label>

<liferay-ui:asset-categories-selector

className="<%= entry.getClass().getName() %>"

classPK="<%= entry.getPrimaryKey() %>"

/>

These two taglibs will create appropriate form controls that allow the user to
enter any tag (even if it doesn't exist) or search and select one of the existing
categories.

Tip: If you are using Liferay's Allow Form taglibs, then creating a field to
enter tags or categories is even simpler. You just need to use <aui:input
name="tags" type="assetTags" /> and <aui:input name="categories"
type="assetCategories" /> respectively.

Once the tags and categories have been entered you will want to show them
somewhere along with the content of the asset, there are another pair of tags that you
can use to do so:

<label>Tags</label>

<liferay-ui:asset-tags-summary

className="<%= entry.getClass().getName() %>"

classPK="<%= entry.getPrimaryKey() %>"

/>

 110 Asset Framework

http://cdn.docs.liferay.com/portal/6.0/javadocs/com/liferay/portal/kernel/exception/SystemException.html
http://cdn.docs.liferay.com/portal/6.0/javadocs/com/liferay/portal/kernel/exception/PortalException.html

Liferay APIs and Frameworks

<label>Categories</label>

<liferay-ui:asset-categories-summary

className="<%= entry.getClass().getName() %>"

classPK="<%= entry.getPrimaryKey() %>"

/>

In both tags you can also use an optional parameter called portletURL. When
specifying this parameter each of the tags will be a link built with the provided URL
and adding a “tag” parameter or a “categoryId” parameter. This is very useful in
order to provide support for tags navigation and categories navigation within your
portlet. But you will need to take care of implementing this functionality yourself in
the code of the portlet by reading the values of those two parameters and using the
AssetEntryService to query the database for entries based on the specified tag or
category.

 Publishing assets with Asset Publisher

One of the nice benefits of using the asset framework is the possibility of using
the Asset Publisher portlet, which is part of the Liferay distribution, to publish lists of
your custom asset types. These lists can be dynamic (for example based on the tags or
categories that the asset has) or manually selected by an administrator.

In order to be able to display your assets the Asset Publisher needs to know how
to access some metadata of them and also needs you to provide templates for the
different type of views that it can display (abstract and full view).

You can provide all this information to the Asset Publisher through a pair of
classes that implement the AssetRendererFactory interface and the AssetRenderer
interface:

• AssetRendererFactory : this is the class that knows how to retrieve specific
assets from the persistent storage from the classPK (that is usually the
primary key, but can be anything you have chosen when invoking the
updateAsset method used to add or update the asset). This class should be
able to grab the asset from a groupId (that identifies an scope of data) and a
urlTitle (which is a title that can be used in friendly URLs to refer uniquele
to the asset within a given scope). Finally, it can also provide a URL that the
Asset Publisher can use when a user wants to add a new asset of your
custom type. This URL should point to your own portlet. There are other
less important methods, but you can avoid implementing them by extending
from BaseAssetRendererFactory. Extending from this class, instead of
implementing the interface directly will also make your code more robust if
there are changes in the interface in future versions of Liferay, since the
base implementation will provide custom implementations for them.

• AssetRenderer : this is the class that provides metadata information about
one specific asset and is also able to check for permissions to edit or view it
for the current user. It is also reponsible for rendering the asset for the
different templates (abstract, and full content), by forwarding to an specific
JSP. It is also recommended that instead of implementing the interface
directly, you extend from the BaseAssetRenderer class, that provides with
nice defaults and more robustness for methods that could be added to the

Asset Framework 111

http://docs.liferay.com/portal/6.0/javadocs/com/liferay/portlet/asset/model/BaseAssetRenderer.html
http://docs.liferay.com/portal/6.0/javadocs/com/liferay/portlet/asset/model/AssetRenderer.html
http://docs.liferay.com/portal/6.0/javadocs/com/liferay/portlet/asset/model/BaseAssetRendererFactory.html
http://docs.liferay.com/portal/6.0/javadocs/com/liferay/portlet/asset/model/AssetRendererFactory.html

Liferay APIs and Frameworks

interface in the future.

Let's seen an example of these two classes. Again we will pick Liferay's Blogs
portlet. Lets start with the implementation for the AssetRendererFactory:

public class BlogsEntryAssetRendererFactory extends BaseAssetRendererFactory
{

public static final String CLASS_NAME = BlogsEntry.class.getName();

public static final String TYPE = "blog";

public AssetRenderer getAssetRenderer(long classPK, int type)

throws PortalException, SystemException {

BlogsEntry entry = BlogsEntryLocalServiceUtil.getEntry(classPK);

return new BlogsEntryAssetRenderer(entry);

}

public AssetRenderer getAssetRenderer(long groupId, String urlTitle)

throws PortalException, SystemException {

BlogsEntry entry = BlogsEntryServiceUtil.getEntry(
groupId, urlTitle);

return new BlogsEntryAssetRenderer(entry);

}

public String getClassName() {

return CLASS_NAME;

}

public String getType() {

return TYPE;

}

public PortletURL getURLAdd(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse)

throws PortalException, SystemException {

HttpServletRequest request =

liferayPortletRequest.getHttpServletRequest();

ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute(

WebKeys.THEME_DISPLAY);

if (!BlogsPermission.contains(

themeDisplay.getPermissionChecker(),

 112 Asset Framework

Liferay APIs and Frameworks

themeDisplay.getScopeGroupId(), ActionKeys.ADD_ENTRY)) {

return null;

}

PortletURL portletURL = PortletURLFactoryUtil.create(

request, PortletKeys.BLOGS, getControlPanelPlid(themeDisplay),

PortletRequest.RENDER_PHASE);

portletURL.setParameter("struts_action", "/blogs/edit_entry");

return portletURL;

}

public boolean hasPermission(

PermissionChecker permissionChecker, long classPK, String actionId)

throws Exception {

return BlogsEntryPermission.contains(

permissionChecker, classPK, actionId);

}

protected String getIconPath(ThemeDisplay themeDisplay) {

return themeDisplay.getPathThemeImages() + "/blogs/blogs.png";

}

}

And here is the AssetRenderer implementation:

public class BlogsEntryAssetRenderer extends BaseAssetRenderer {

public BlogsEntryAssetRenderer(BlogsEntry entry) {

_entry = entry;

}

public long getClassPK() {

return _entry.getEntryId();

}

public String getDiscussionPath() {

if (PropsValues.BLOGS_ENTRY_COMMENTS_ENABLED) {

return "edit_entry_discussion";

}

else {

return null;

}

}

Asset Framework 113

Liferay APIs and Frameworks

public long getGroupId() {

return _entry.getGroupId();

}

public String getSummary(Locale locale) {

return HtmlUtil.stripHtml(_entry.getContent());

}

public String getTitle(Locale locale) {

return _entry.getTitle();

}

public PortletURL getURLEdit(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse) {

PortletURL portletURL = liferayPortletResponse.createRenderURL(

PortletKeys.BLOGS);

portletURL.setParameter("struts_action", "/blogs/edit_entry");

portletURL.setParameter(
"entryId", String.valueOf(_entry.getEntryId()));

return portletURL;

}

public String getUrlTitle() {

return _entry.getUrlTitle();

}

public String getURLViewInContext(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse,

String noSuchEntryRedirect) {

ThemeDisplay themeDisplay =

(ThemeDisplay)liferayPortletRequest.getAttribute(

WebKeys.THEME_DISPLAY);

return themeDisplay.getPortalURL() + themeDisplay.getPathMain() +

"/blogs/find_entry?noSuchEntryRedirect=" +

HttpUtil.encodeURL(noSuchEntryRedirect) + "&entryId=" +

_entry.getEntryId();

}

public long getUserId() {

return _entry.getUserId();

}

 114 Asset Framework

Liferay APIs and Frameworks

public String getUuid() {

return _entry.getUuid();

}

public boolean hasEditPermission(PermissionChecker permissionChecker) {

return BlogsEntryPermission.contains(

permissionChecker, _entry, ActionKeys.UPDATE);

}

public boolean hasViewPermission(PermissionChecker permissionChecker) {

return BlogsEntryPermission.contains(

permissionChecker, _entry, ActionKeys.VIEW);

}

public boolean isPrintable() {

return true;

}

public String render(

RenderRequest renderRequest, RenderResponse renderResponse,

String template)

throws Exception {

if (template.equals(TEMPLATE_ABSTRACT) ||

template.equals(TEMPLATE_FULL_CONTENT)) {

renderRequest.setAttribute(WebKeys.BLOGS_ENTRY, _entry);

return "/html/portlet/blogs/asset/" + template + ".jsp";

}

else {

return null;

}

}

protected String getIconPath(ThemeDisplay themeDisplay) {

return themeDisplay.getPathThemeImages() + "/blogs/blogs.png";

}

private BlogsEntry _entry;

}

Note that in the render method, there is a forward to a JSP in the case of the
abstract and the full content templates. The abstract is not mandatory and if it is not
provided, the Asset Publisher will show the title and the summary obtained through
the appropriate methods of the renderer. The full content template should always be
provided. Here is how it looks like for blogs entries:

Asset Framework 115

Liferay APIs and Frameworks

<%@ include file="/html/portlet/blogs/init.jsp" %>

<%

BlogsEntry entry = (BlogsEntry)request.getAttribute(WebKeys.BLOGS_ENTRY);

%>

<%= entry.getContent() %>

<liferay-ui:custom-attributes-available className="<%=
BlogsEntry.class.getName() %>">

<liferay-ui:custom-attribute-list

className="<%= BlogsEntry.class.getName() %>"

classPK="<%= (entry != null) ? entry.getEntryId() : 0 %>"

editable="<%= false %>"

label="<%= true %>"

/>

</liferay-ui:custom-attributes-available>

That's about it. It wasn't that hard, right? Now you can start enjoying the benefits
of the asset framework in your custom portlets.

 Other frameworks
Liferay has a wide variety of frameworks that make it much easier to develop

complex functionalities for your own applications with little effort. These frameworks
have evolved from the applications bundled with Liferay out of the box so they have
been proven in the real world, even in very high performance portals.

This chapter is a placeholder that provides a quick description to the main
frameworks provided with Liferay 6. Note that what follows is a work in progress
since more sections will be added over time and some of the current sections will
evolve into its own chapter as we add more information and detailed instructions on
how to use them over time.

• File Storage Framework: Allows storing files using the backend of the
Document Library. By using this framework you won't have to worry
yourself about clustering or backups since that will already be taken care of
for the Document Library itself. This framework is used, for example, by the
wiki and the message boards of Liferay to store attached files in pages and
posts respectively. You can check the sourcecode of these two portlets for
great real-life examples of how to use the framework.

• Workflow Framework: Allows adding Workflow functionality to your own
portlets. One great benefit of using this framework is that you will be able to
reuse all of the workflow management UIs provided by Liferay. Also you will
be able to abstract your code from the specific workflow engine that will be
used (JBPM, Liferay Kaleo, …). Many Liferay portlets use this framework. If
you want a simple example to learn how to use it, the blogs portlet is a good
start.

 116 Other frameworks

Liferay APIs and Frameworks

• Comments Framework: Allows adding comments easily in any portlet
without any database code. Many Liferay portlets use this functionality, for
example the blogs portlet for the comments of each entry.

• Custom fields: A portlet that uses custom fields will allow the end user to
extend the fields of its data entries with custom ones defined by the end
user. To see a list of data types in Liferay that support this functionality just
go to the Control Panel > Custom Fields.

• Report abuse: Allow end users to report that some information published in
a page should not be there.

• Inline permissions Framework: Allows enhancing your SQL queries so that
the database takes care of checking for view permissions. This is
particularly useful when doing queries for data entries that could result in a
large number of items (and thus checking of permissions afterwards would
be very ineficient) or when you want to implement pagination (which would
not work fine if permissions are checked afterwards and an item is
removed). The Document Library or the Message Boards of Liferay are
examples of portlets that use this functionality.

• ServiceContext: The ServiceContext object contains a set of fields that are
common to many different services. It is used, for example to carry tags,
categories, permissions information, … It is not a framework in itself but
rather a utility object that helps usage of the other frameworks.

Check in the near future for new editions of the Developer's Guide for extended
information on each of these frameworks.

Other frameworks 117

9. 9. RRESOURCESESOURCES FORFOR L LIFERAYIFERAY
DDEVELOPERSEVELOPERS

The following are useful reference resources for developers working with the
Liferay Platform:

• Liferay specific resources:

◦ What is a portal?
http://www.liferay.com/products/what-is-a-portal

◦ Platform Javadocs:
http://docs.liferay.com/portal/6.0/javadocs/

◦ Reference documentation for Liferay's XML files:
http://docs.liferay.com/portal/6.0/definitions/

◦ Reference documentation for Liferay's taglibs:
http://docs.liferay.com/portal/6.0/taglibs/

◦ Sources for version 6 (use your liferay.com account to access them):
http://svn.liferay.com/repos/public/portal/branches/6.0.6/

◦ Sources of the development version:
http://svn.liferay.com/browse/portal

• Related specifications and standards:

◦ Java 5 Javadocs:
http://download.oracle.com/javase/1.5.0/docs/api/

◦ JavaEE 5 Javadocs:
http://download.oracle.com/javaee/5/api/

◦ JavaEE Overview:

http://download.oracle.com/javaee/5/api/
http://download.oracle.com/javase/1.5.0/docs/api/
http://svn.liferay.com/browse/portal
http://svn.liferay.com/repos/public/portal/branches/6.0.6/
http://docs.liferay.com/portal/6.0/taglibs/
http://docs.liferay.com/portal/6.0/definitions/
http://docs.liferay.com/portal/6.0/javadocs/
http://www.liferay.com/products/what-is-a-portal

Resources for Liferay Developers

http://www.oracle.com/technetwork/java/javaee/tech/index.html

◦ Portlet Specification 2.0 (JSR-286):
http://jcp.org/en/jsr/detail?id=286

◦ Web Services for Remote Portlets (WSRP):
http://www.oasis-open.org/committees/wsrp/

◦ Java Content Repository (JSR-170):
http://jcp.org/en/jsr/detail?id=170

◦ Java Server Faces 1.2 (JSR-252):
http://www.jcp.org/en/jsr/detail?id=252

◦ Java Server Faces 2.0 (JSR-314):
http://www.jcp.org/en/jsr/detail?id=314

◦ OpenSocial:
http://www.opensocial.org/

◦ Sitemap protocol:
http://sitemaps.org/

◦ WebDAV:
http://webdav.org/

◦ SOAP:
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

◦ HTML 5:
http://html5.org/

◦ WCAG 2.0:
http://www.w3.org/WAI/intro/wcag20.php

• Related and commonly used technologies:

◦ Spring Framework: http://www.springsource.org/

◦ Hibernate: http://www.hibernate.org/

◦ Struts 1: http://struts.apache.org/1.x/

◦ Lucene: http://lucene.apache.org/

◦ Quartz: http://www.quartz-scheduler.org

◦ Alloy UI: http://alloy.liferay.com/

◦ YUI 3: http://developer.yahoo.com/yui/3/

◦ jQuery: http://jquery.com/

◦ IceFaces: http://www.icefaces.org/main/home/

◦ PortletFaces: http://www.portletfaces.org/

◦ Vaadin: http://vaadin.com/home

◦ OpenXava: http://www.openxava.org/web/guest/liferay

 120 Resources for Liferay Developers

http://www.openxava.org/web/guest/liferay
http://vaadin.com/home
http://www.portletfaces.org/
http://www.icefaces.org/main/home/
http://jquery.com/
http://developer.yahoo.com/yui/3/
http://alloy.liferay.com/
http://www.quartz-scheduler.org/
http://lucene.apache.org/
http://struts.apache.org/1.x/
http://www.hibernate.org/
http://www.springsource.org/
http://www.w3.org/WAI/intro/wcag20.php
http://html5.org/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://webdav.org/
http://sitemaps.org/
http://www.opensocial.org/
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=252
http://jcp.org/en/jsr/detail?id=170
http://www.oasis-open.org/committees/wsrp/
http://jcp.org/en/jsr/detail?id=286
http://www.oracle.com/technetwork/java/javaee/tech/index.html

Resources for Liferay Developers

◦ Apache ant: http://ant.apache.org/

◦ Maven: http://maven.apache.org/

◦ Selenium: http://seleniumhq.org/

◦ Tomcat: http://tomcat.apache.org/

◦ JBoss Application Server: http://www.jboss.org/

Resources for Liferay Developers 121

http://www.jboss.org/
http://tomcat.apache.org/
http://seleniumhq.org/
http://maven.apache.org/
http://ant.apache.org/

10. 10. CCONCLUSIONSONCLUSIONS

Liferay Portal is a very flexible platform that allows creating a wide variety of
portals and websites. It is the developer through custom applications and
customizations who gives it the shape desired by the end users of the portal. Liferay
provides several tools (Plugins SDK and Liferay IDE) to ease this task. It also provides
the foundations and frameworks to either implement completely new applications
(portlet plugins) or customize the core functionalities and applications provided with
Liferay (hook plugins and ext plugins).

As the official Developer's Guide for Liferay, this document has offered a
description of each of the tools and frameworks that you as a developer can use to
build the bests portals out there. Of course, while this document is large, it is just the
beginning, the more you learn, the more efficient you will be while developing and
the more interesting applications and customizations you will create. Here are some
suggestions to learn more after reading this guide:

• Read the “Liferay in Action” book. This book, written by Rich Sezov,
Liferay's Knowledge Manager, provides a very extensive step by step guide
of Liferay's development technologies.

• Use Liferay's Community Forums, not only to ask questions but also to to
answer them. You will be surprised how much you can learn while trying to
help others.

• Read the source. Liferay is Open Source, and you can leverage that to learn
as much as you want about it. Download the code if you haven't done it yet
and read it. Link it within your IDE so that you can enter Liferay's code
while debugging your own code. It will give you a great opportunity to learn
as much as the greatest expert of Liferay in the world.

• Go to the websites of the standards and libraries that Liferay is based on and
read their documentation. Some examples are: Spring, Hibernate, Portlet
Specification, etc.

http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://www.hibernate.org/
http://www.springsource.org/
http://forum.liferay.com/
http://affiliate.manning.com/idevaffiliate.php?id=1133&url=7&tid1=liferaywebsite

	Conventions
	Publisher Notes
	Updates
	November 3rd 2010
	February 27th 2011
	March 9th 2011

	1. Introduction
	Developing applications for Liferay
	Portlets
	OpenSocial Gadgets
	Reusing existing web applications
	Supported Technologies

	Extending and customizing Liferay
	Customizing the look and feel: Themes
	Adding new predefined page layouts: Layout Templates
	Customizing or extending the out of the box functionalities: Hook plugins
	Advanced customization: Ext plugins

	Choosing the best tool for the job

	2. The Plugins SDK
	Initial Setup
	Ant Configuration
	Plugins SDK Configuration

	Structure of the SDK

	3. Portlet Development
	Creating a Portlet
	Deploying the Portlet

	Anatomy of a Portlet
	A Closer Look at the My Greeting Portlet

	Writing the My Greeting Portlet
	Understanding the Two phases of Portlet Execution
	Passing Information from the Action Phase to the Render Phase
	Developing a Portlet with Multiple Actions
	Optional: Adding Friendly URL Mapping to the Portlet

	4. Creating Liferay Themes
	Introduction
	Creating a Theme
	Deploying the Theme

	Anatomy of a Theme
	Thumbnails
	JavaScript
	Settings
	Color Schemes
	Portal Predefined Settings
	Theme inheritance

	5. Hooks
	Creating a Hook
	Deploying the Hook

	Overriding a JSP
	Customizing JSPs without overriding the original

	Performing a Custom Action
	Extending and Overriding portal.properties

	Overriding a Portal Service
	Overriding a Language.properties File

	6. Ext plugins
	Creating an Ext plugin
	Developing an Ext plugin
	Set up
	Initial deployment
	Redeployment
	Advanced customization techniques
	Advanced configuration files
	Changing the API of a core service
	Replacing core classes in portal-impl
	Licencing and Contributing

	Deploying in production
	Method 1: Redeploying Liferay's web application
	Method 2: Generate an aggregated WAR file

	Migrating old extension environments
	Conclusions

	7. Liferay Tools
	Liferay IDE
	Installation
	Requirements
	Installation steps
	Alternative installation

	Set up
	Liferay Plugins SDK Setup
	Liferay Portal Tomcat Runtime / Server Setup

	Importing Existing Projects into Liferay IDE
	Importing existing Liferay Project from a Plugins SDK
	Importing an existing Eclipse Project that is not aware of the Liferay IDE
	Importing an existing Liferay IDE project
	Verifying that the import has succeeded
	Setting the Console Encoding

	Testing the Liferay portal server
	Create a new Liferay plugin Project

	Service Builder
	Define the Model
	Overview of service.xml

	Generate the Service
	Write the Local Service Class
	Built-In Liferay Services

	8. Liferay APIs and Frameworks
	Security and Permissions
	JSR Portlet Security
	Liferay's Permission System Overview
	Implementing Permissions
	Permission Algorithms
	Adding a Resource
	Adding Permission
	Checking Permissions

	Asset Framework
	Adding, updating and deleting assets
	Entering and displaying tags and categories
	Publishing assets with Asset Publisher

	Other frameworks

	9. Resources for Liferay Developers
	10. Conclusions

