
Development
Documentation

Development Documentation
Connor McKay, Editor
Jorge Ferrer, Editor
Copyright © 2010 by Liferay, Inc.

This work is offered under the Creative Commons Attribution-Share
Alike Unported license.

You are free:
● to share—to copy, distribute, and transmit the work
● to remix—to adapt the work

Under the following conditions:
● Attribution. You must attribute the work in the manner

specified by the author or licensor (but not in any way that
suggests that they endorse you or your use of the work).

● Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

The full version of this license appears in the appendix of this book, or
you may view it online here:
http://creativecommons.org/licenses/by-sa/3.0

Contributors:
Joseph Shum, Alexander Chow, Redmond Mar, Ed Shin, Rich Sezov,
Samuel Kong, Connor McKay

http://creativecommons.org/licenses/by-sa/3.0

Table of ContentsTable of Contents
1. Introduction...7

CORE TECHNOLOGIES..7
DEVELOPMENT STRATEGIES..8

Portlets...8
Themes...9
Layout Templates...9
Hooks..9
Ext plugins..9
The Web Application Integrator (WAI)..9

2. The Plugins SDK...11
INITIAL SETUP...11

Ant Configuration...12
Plugins SDK Configuration..12

STRUCTURE OF THE SDK...13
3. Portlet Development...15

CREATING A PORTLET..15
Deploying the Portlet...16

ANATOMY OF A PORTLET..16
A Closer Look at the My Greeting Portlet...18

WRITING THE MY GREETING PORTLET...20
OPTIONAL: ADDING FRIENDLY URL MAPPING TO THE PORTLET...22

4. Creating Liferay Themes...25
CREATING A THEME..25

Deploying the Theme...26
ANATOMY OF A THEME...26
THUMBNAILS...28
JAVASCRIPT..28
SETTINGS..29
COLOR SCHEMES...30
PORTAL PREDEFINED SETTINGS...31

5. Hooks...33
CREATING A HOOK...33

Deploying the Hook..34
OVERRIDING A JSP...34
PERFORMING A CUSTOM ACTION...35

Extending and Overriding portal.properties..36
OVERRIDING A PORTAL SERVICE..36
OVERRIDING A LANGUAGE.PROPERTIES FILE...37

6. Ext plugins...39
CREATING AN EXT PLUGIN...40
DEVELOPING AN EXT PLUGIN..42

Set up...42
Initial deployment..43
Redeployment..45

DEPLOYING IN PRODUCTION..46
Method 1: Redeploying Liferay's web application...................................46
Method 2: Generate an aggregated WAR file..47

MIGRATING OLD EXTENSION ENVIRONMENTS...48
CONCLUSIONS...48

7. Liferay Frameworks..51
SERVICE BUILDER...51

Define the Database Structure...51
Overview of service.xml...52

iii

Generate the Service...53
Write the Local Service Class...54
Built-In Liferay Services..55

SECURITY AND PERMISSIONS..55
Overview..55
Implementing Permissions...55
Adding a Resource...59
Adding Permission..60
Checking Permissions...61

iv

PPREFACEREFACE

This guide was written as a quick reference to getting started de-
veloping on the Liferay Portal platform. It is a guide for those who want
to get their hands dirty using Liferay's framework and APIs to create
fantastic websites.

For a more exhaustive view into Liferay development, we encour-
age you to check out the complete, official guide to Liferay develop-
ment, Liferay in Action, published by Manning Publications. You can
find this book online at http://manning.com/sezov.

The information contained herein has been organized in a format
similar to a reference, so that it will be easier to find specific details
later.

 Conventions
Sections are broken up into multiple levels of headings, and these

are designed to make it easy to find information.

v

Tip: This is a tip. Tips are used to indicate a suggestion or a piece of
information that affects whatever is being talked about in the sur-
rounding text. They are always accompanied by this gray box and the
icon to the left.

http://manning.com/sezov

Source code and configuration file directives are presented like this.

If source code goes multi-line, the lines will be \
separated by a backslash character like this.

Italics are used to represent links or buttons to be clicked on in a
user interface and to indicate a label or a name of a Java class.

Bold is used to describe field labels and portlets.

Page headers denote the chapters, and footers denote the particu-
lar section within the chapter.

 Publisher Notes
It is our hope that this guide will be valuable to you, and that it will

be an indispensable resource as you begin to develop on the Liferay
platform. If you need any assistance beyond what is covered in this
guide, Liferay, Inc. offers training, consulting, and support services to
fill any need that you might have. Please see http://www. lifer -
ay .com/web/guest/services for further information about the services
we can provide.

As always, we welcome any feedback. If there is any way you think
we could make this guide better, please feel free to mention it on our
forums. You can also use any of the email addresses on our Contact Us
page (http://www. liferay .com/web/guest/about_us/contact_us). We are
here to serve you, our users and customers, and to help make your ex-
perience using Liferay Portal the best it can be.

 Updates
November 3rd 2010

Extended existing information about the ext plugin and added in-
formation about alternatives for deployment to production.

vi

http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/services
http://www.liferay.com/web/guest/services
http://www.liferay.com/web/guest/services
http://www.liferay.com/web/guest/services

1. 1. IINTRODUCTIONNTRODUCTION

This guide provides a basic introduction to all the aspects of devel-
oping with Liferay Portal. The introduction give you the orbital view of
the Liferay framework, including its core technologies, libraries, and
development options. The second chapter introduces the Plugins Soft-
ware Development Kit and explains how to setup your development
environment. The next four chapters discuss the main development
strategies in more detail: portlets, themes, hooks, and Ext plugins. The
final chapter is a brief reference for two of the key Liferay technolo-
gies, ServiceBuilder and Alloy UI.

 Core Technologies
Liferay is first and foremost a Java portlet container, conforming to

the JSR168 and JSR286 specifications. Liferay is extremely versatile,
and operates as a JavaEE 5 servlet under all commonly used Java
servlet containers, including Apache Tomcat, GlassFish, JBoss, Jetty,
Jonas, WebSphere, WebLogic, and Resin. Liferay can connect to almost
any SQL database server, including IBM DB2, Apache Derby, Firebird,
Hypersonic, HSQLDB, IBM Informix, Ingres, MySQL, Oracle, PostgreSQL,
SAP DB, Microsoft SQL Server, and Sybase. Internally, Liferay can be
configured to use either Hibernate or JPA for managing database con-
nections and handling queries.

To further increase its flexibility, Liferay makes extensive use of the
inversion of control (IOC) and aspect oriented programming (AOP)
methodologies through the Spring framework. Almost every utility or
service in Liferay can be replaced with another implementation simply
by altering the appropriate Java Bean reference.

Caching is performed with a combination of distributed and local

Introduction

caching using Ehcache, Memcached, or simple in-memory caching. De-
velopers can add support for any other caching mechanism by writing
their own cache manager class and injecting it into Liferay using
Spring.

Liferay internally uses many open source projects, including Struts
and Spring. This does not mean however that portlets are limited to
only these technologies. Liferay is a standard JSR-286 portlet contain-
er, and also supports a wide variety of portlet frameworks, including
Struts, Spring MVC, Java Server Faces (JSF), and its own framework,
MVCPortlet. Portlet templates can be written in Velocity, Freemarker,
vanilla JSP, or virtually any other language of the developer's choosing.

To accelerate the development process, Liferay includes many
common interface elements and widgets as part of the Alloy UI frame-
work. It also provides its own persistence and service framework called
Service Builder, which automatically generates much of the common
code required for find, create, update, and delete database operations.

 Development Strategies
Extensions to the Liferay platform can take several forms. Some de-

velopment strategies make it possible to modify the Liferay core be-
havior, while others only allow the addition of distinct bundles of new
functionality. It is important to choose the most appropriate strategy in
order to minimize the time and effort involved, while also ensuring for-
ward compatibility with future versions. The six development options
available in Liferay are portlets, themes, layout templates, hooks, Ext
plugins, and the web application integrator (WAI).

 Portlets
Portlets are small web applications that run in a portion of a web

page. The heart of any portal implementation is its portlets, because
they contain the actual functionality. The portlet container is only re-
sponsible for aggregating the set of portlets that are to appear on any
particular page.

Portlets are the least invasive form of extension to Liferay, as they
are entirely self contained. Consequentially portlets are also the the
most forward compatible development option. They are hot-deployed
as plugins into a Liferay instance, resulting in zero downtime. A single
plugin can contain multiple portlets, allowing you to split up your ex-
tension's functionality into several smaller pieces that can be arranged
dynamically on a page. Portlets can be written using any of the frame-
works mentioned earlier, or either of the Liferay specific frameworks:
MVCPortlet or AlloyPortlet.

 8 Development Strategies

Introduction

 Themes
Themes allow the look of the Liferay portal to be changed using a

combination of CSS and Velocity templates. In many cases, it is possi-
ble to adapt the default Liferay theme to the desired look using only
CSS, providing the most forward compatibility. If CSS is not sufficient
and more major changes are required, Liferay allows you to include
only the templates you modified in your theme, and it will automatical-
ly copy the rest from the default theme. Like portlets, themes are hot-
deployed as plugins into a Liferay instance.

 Layout Templates
Layouts are similar to themes, except that they change the ar-

rangement of portlets on a page rather than its look. Layout templates
are also written in Velocity and are hot-deployable.

 Hooks
Hooks are the recommended method of adding to the core func-

tionality of Liferay at many predefined extension points. Hooks can be
used to modify portal properties or to perform custom actions on start-
up, shutdown, login, logout, session creation and session destruction.
Using Spring IOC, it is possible with a hook to replace any of the core
Liferay services with your own implementation. Hooks can also replace
the JSP templates used by any of the default portlets, allowing you to
customize their appearance as desired. Best of all, hooks are hot-de-
ployable plugins just like portlets.

 Ext plugins
Ext plugins provide the largest degree of flexibility in modifying the

Liferay core, and allow you to replace essentially any class with your
own implementation. This flexibility comes at a cost however, as it is
highly unlikely that an Ext plugin written for one version of Liferay will
continue to work in the next version without modification. For this rea-
son, Ext plugins are not recommended unless there is no other way to
accomplish the same goal, and only if you are very familiar with the
Liferay core. Even though Ext plugins are deployed as plugins, the
server must be restarted for changes to take effect.

Ext plugins are a new feature in Liferay 6.0 which replace what was
previously known as the extension environment.

 The Web Application Integrator (WAI)
The WAI is not a true development option, as it does not require

any actual code to be written. Instead it offers a quick way to bring any

Development Strategies 9

Introduction

standard Java Servlet application into Liferay with a decent level of in-
tegration. Simply copy a .WAR file into the Liferay deploy directory,
and it will automatically be configured with the necessary files to make
it available inside an iframe as a portlet. For more information on this
topic, please see the Liferay wiki.

 10 Development Strategies

2. 2. TTHEHE P PLUGINSLUGINS SDK SDK

There are multiple ways to create plugins for Liferay. Many IDEs on
the market today support portlet projects natively, and at the time this
guide was written, the official Liferay IDE plugin for Eclipse has just
been released. However, because Liferay makes every effort to remain
tool agnostic, we provide a Plugins Software Development Kit (SDK)
which may be used in any environment. In this guide we will use only
the Plugins SDK and a text editor, but you may use whatever tool you
are comfortable with.

 Initial Setup
Setting up your environment for Liferay development is very

straightforward. First, download a fresh copy of Liferay Portal bundled
with Tomcat from the Liferay website at http://www.liferay.com/down-
loads/. We recommend using Tomcat for development, as it is small,
fast, and takes up less resources than most other servlet containers.
Also download the Plugins SDK from the Additional Files page.

Unzip both archives to a folder of your choosing. Then, in the lifer-
ay-portal-[version]/tomcat-6.0.26/webapps directory, delete all the di-
rectories except for ROOT and tunnel-web (if you are using the EE
edition of Liferay this step is not necessary). To start Liferay, open a
terminal, navigate to liferay-portal-[version]/tomcat-6.0.26/bin, enter
the following command (Linux and Mac OS X):

./catalina.sh run

On Windows you may simply double click startup.bat. To shut the
server down later, press Ctrl-c.

Once Liferay starts your browser should open to

http://www.liferay.com/downloads/
http://www.liferay.com/downloads/

The Plugins SDK

http://localhost:8080/ and you can login with the email test@liferay.-
com and password test.

 Ant Configuration
Before you can begin developing portlets, you must first have some

tools installed. Building projects in the Plugins SDK requires that you
have Ant 1.7.0 or higher installed on your machine. Download the lat-
est version of Ant from http://ant.apache.org/. Decompress the archive
into a folder of your choosing.

Next, set an environment variable called ANT_HOME which points
to the folder to which you installed Ant. Use this variable to add the bi-
naries for Ant to your PATH by adding ANT_HOME/bin to your PATH
environment variable.

You can do this on Linux or Mac OS X by modifying your .bash_pro-
file file as follows (assuming you installed Ant in /java):

export ANT_HOME=/java/apache-ant-1.8.1

export PATH=$PATH:$ANT_HOME/bin

Close and reopen your terminal window to make these settings
take effect.

You can do this on Windows by going to Start -> Control Panel,
and double-clicking the System icon. Go to Advanced, and then click
the Environment Variables button. Under System Variables, select
New. Make the Variable Name ANT_HOME and the Variable Value the
path to which you installed Ant (e.g., c:\java\apache-ant-1.8.1), and
click OK.

Scroll down until you find the PATH environment variable. Select it
and click Edit. Add %ANT_HOME%\bin to the end of the Variable Val-
ue. Click OK, and then click OK again. Open a command prompt and
type ant and press Enter. If you get a build file not found error, you
have correctly installed Ant. If not, check your environment variable
settings and make sure they are pointing to the directory in which you
unzipped Ant.

 Plugins SDK Configuration
Now that all the proper tools are in place, we must configure the

Plugins SDK to be able to deploy into your Liferay instance. You will no-
tice that the Plugins SDK contains a file called build.properties. Open
this file in your editor of choice. At the top of the file is the message
“DO NOT EDIT THIS FILE”. This file contains the settings for where you
have Liferay installed and where your deployment folder is going to be.
However, you should not customize this file. Instead, create a new file
in the same folder called build.${user.name}.properties, where ${us-
er.name} is your user ID on your machine. For example, if your user

 12 Initial Setup

http://ant.apache.org/
http://localhost:8080/

The Plugins SDK

name is jsmith (for John Smith), you would create a file called build.j-
smith.properties.

Edit this file and add the following line:

app.server.dir=the directory containing your application server

In our case, app.server.dir should be the absolute path to your lif-
eray-portal-[version]/tomcat-6.0.26 directory.

Save the file. You are now ready to start using the Plugins SDK.

 Structure of the SDK
Each folder in the Plugins SDK contains scripts for generating that

type of plugin. New plugins are placed in their own subdirectory of the
appropriate plugin directory. For instance, a new portlet called “greet-
ing-portlet” would reside in liferay-plugins-sdk-6/portlets/greeting-port-
let.

The Plugins SDK can house all of your plugin projects enter-
prise-wide, or you can have separate Plugins SDK projects for each
project. For example, if you have an internal Intranet using Liferay with
some custom portlets, you could keep those portlets and themes in
their own Plugins SDK project in your source code repository. If you
also have an external instance of Liferay for your public Internet web
site, you could have a separate Plugins SDK with those projects as
well. Or you could further separate your projects by having a different
Plugins SDK project for each portlet or theme project.

It is also possible to use use the Plugins SDK as a simple cross-plat-
form project generator. You can create project using the Plugins SDK
and then copy the resulting project folder to your IDE of choice. This
method requires some manual modification of the ant scripts, but it
makes it possible to conform to the strict standards some organiza-
tions have for their Java projects.

Structure of the SDK 13

3. 3. PPORTLETORTLET D DEVELOPMENTEVELOPMENT

In this chapter we will create and deploy a simple portlet using the
Plugins SDK. It will allow a customized greeting to be saved in the
portlet's preferences, and then display it whenever the portlet is
viewed. Finally we will add friendly URL mapping to the portlet to clean
up its URLs.

In developing your own portlets you are free to use any framework
you prefer, such as Struts, Spring MVC, or JSF. For this portlet we will
use the Liferay MVCPortlet framework as it is simple, lightweight, and
easy to understand.

Additionally, Liferay allows for the consuming of PHP and Ruby ap-
plications as portlets, so you do not need to be a Java developer in or-
der to take advantage of Liferay's built-in features (such as user man-
agement, communities, page building and content management). You
can use the Plugins SDK to deploy your PHP or Ruby application as a
portlet, and it will run seamlessly inside of Liferay. There are plenty of
examples of this; to see them, check out the directory plugins/trunk
from Liferay's public Subversion repository.

 Creating a Portlet
Creating portlets with the Plugins SDK is extremely simple. As not-

ed before, there is a portlets folder inside of the Plugins SDK folder.
This is where your portlet projects will reside. To create a new portlet,
first decide what its name is going to be. You need both a project
name (without spaces) and a display name (which can have spaces).
When you have decided on your portlet's name, you are ready to cre-
ate the project. For the greeting portlet, the project name is “my-greet-
ing”, and the portlet title is “My Greeting”. Navigate to the portlets di-

Portlet Development

rectory in the terminal and enter the following command (Linux and
Mac OS X):

./create.sh my-greeting "My Greeting"

On Windows enter the following instead:

create.bat my-greeting "My Greeting"

You should get a BUILD SUCCESSFUL message from Ant, and there
will now be a new folder inside of the portlets folder in your Plugins
SDK. This folder is your new portlet project. This is where you will be
implementing your own functionality. Notice that the Plugins SDK au-
tomatically appends “-portlet” to the project name when creating this
folder.

Alternatively, if you will not be using the Plugins SDK to house your
portlet projects, you can copy your newly created portlet project into
your IDE of choice and work with it there. If you do this, you may need
to make sure the project references some .jar files from your Liferay in-
stallation, or you may get compile errors. Since the ant scripts in the
Plugins SDK do this for you automatically, you don't get these errors
when working with the Plugins SDK.

To resolve the dependencies for portlet projects, see the class path
entries in the build-common.xml file in the Plugins SDK project. You will
be able to determine from the plugin.classpath and portal.classpath
entries which .jar files are necessary to build your newly created port-
let project.

 Deploying the Portlet
Open a terminal window in your portlets/my-greeting-portlet direc-

tory and enter this command:

ant deploy

You should get a BUILD SUCCESSFUL message, which means that
your portlet is now being deployed. If you switch to the terminal win-
dow running Liferay, and wait for a few seconds, you should see the
message “1 portlet for my-greeting-portlet is available for use.” If not,
something is wrong and you should double check your configuration.

Go to your web browser and log in to the portal as explained earli-
er. Then hover over Add at the top of the page, and click on More. Se-
lect the Sample category, and then click Add next to My Greeting. Your
portlet should appear in the page below. Congratulations, you've just
created your first portlet!

 Anatomy of a Portlet
A portlet project is made up at a minimum of three components:

 16 Anatomy of a Portlet

Portlet Development

1. Java Source

2. Configuration files

3. Client-side files (*.jsp, *.css, *.js, graphics, etc.)

These files are stored in a standard directory structure which looks
like the following:

/PORTLET-NAME/

build.xml

/docroot/

/css/

/js/

/WEB-INF/
/src/ (not created by default)

liferay-display.xml

liferay-plugin-package.properties

liferay-portlet.xml

portlet.xml

web.xml

icon.png

view.jsp

The portlet we just created is a fully functional portlet which can be
deployed to your Liferay instance.

New portlets are configured by default to use the MVCPortlet
framework, which uses separate JSPs for each page in the portlet, and
for each of the three portlet modes: view, edit, and help.

The Java Source is stored in the docroot/WEB-INF/src folder

The Configuration Files are stored in the docroot/WEB-INF folder.
The standard JSR-286 portlet configuration file portlet.xml is here, as
well as three Liferay specific configuration files. The Liferay specific
configuration files are completely optional, but are important if your
portlets are going to be deployed on a Liferay Portal server.

liferay-display.xml: This file describes what category the portlet
should appear under in the Add menu.

liferay-portlet.xml: This file describes some optional Liferay-specific
enhancements for JSR-286 portlets that are installed on a Liferay Portal
server. For example, you can set whether a portlet is instanceable,
which means that you can place more than one instance on a page,
and each portlet will have its own separate data. Please see the DTD
for this file for further details, as there are too many settings to list
here. The DTD may be found in the definitions folder in the Liferay
source code.

liferay-plugin-package.properties: This file describes the plugin to

Anatomy of a Portlet 17

Portlet Development

Liferay's hot deployer. One of the things that can be configured in this
file is dependency .jars. If a portlet plugin has dependencies on partic-
ular .jar files that already come with Liferay, you can specify them in
this file and the hot deployer will modify the .war file on deployment so
that those .jars are on the class path.

Client Side Files are the .jsp, .css, and JavaScript files that you
write to implement your portlet's user interface. These files should go
in the docroot folder somewhere—either in the root of the folder or in a
folder structure of their own. Remember that with portlets you are only
dealing with a portion of the HTML document that is getting returned
to the browser. Any HTML code you have in your client side files should
be free of global tags such as <html> or <head>. Additionally, all CSS
classes and element IDs must be namespaced with the portlet ID to
prevent conflicts with other portlets.

 A Closer Look at the My Greeting Portlet
If you are new to portlet development, this section will take a closer

look at the configuration options of a portlet.

docroot/WEB-INF/portlet.xml

<portlet>

<portlet-name>my-greeting</portlet-name>

<display-name>My Greeting</display-name>

<portlet-class>com.liferay.util.bridges.mvc.MVCPortlet</portlet-class>

<init-param>

<name>view-jsp</name>

<value>/view.jsp</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

</supports>

<portlet-info>

<title>My Greeting</title>

<short-title>My Greeting</short-title>

<keywords>My Greeting</keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

 18 Anatomy of a Portlet

Portlet Development

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

Here is a basic summary of what each of the elements represents:

portlet-name

The portlet-name element contains the canonical name
of the portlet. Each portlet name is unique within the
portlet application. (This is also referred within Liferay
Portal as the portlet id)

display-
name

The display-name type contains a short name that is in-
tended to be displayed by tools. It is used by display-
name elements. The display name need not be unique.

portlet-class
The portlet-class element contains the fully qualified
class name of the portlet.

init-param
The init-param element contains a name/value pair as
an initialization param of the portlet.

expiration-
cache

Expiration-cache defines expiration-based caching for
this portlet. The parameter indicates the time in sec-
onds after which the portlet output expires. -1 indicates
that the output never expires.

supports

The supports element contains the supported mime-
type. Supports also indicates the portlet modes a port-
let supports for a specific content type. All portlets
must support the view mode.

portlet-info Portlet-info defines portlet information.

securi-
ty-role-ref

The security-role-ref element contains the declaration
of a security role reference in the code of the web ap-
plication. Specifically in Liferay, the role-name refer-
ences which role’s can access the portlet.

docroot/WEB-INF/liferay-portlet.xml - In addition to the stan-
dard portlet.xml options, there are optional Liferay-specific enhance-
ments for Java Standard portlets that are installed on a Liferay Portal
server.

<liferay-portlet-app>

<portlet>

<portlet-name>my-greeting</portlet-name>

<icon>/icon.png</icon>

<instanceable>false</instanceable>

<header-portlet-css>/css/main.css</header-portlet-css>

<footer-portlet-javascript>/js/main.js</footer-portlet-javascript>

<css-class-wrapper>my-greeting-portlet</css-class-wrapper>

</portlet>

<role-mapper>

<role-name>administrator</role-name>

Anatomy of a Portlet 19

Portlet Development

<role-link>Administrator</role-link>

</role-mapper>

<role-mapper>

<role-name>guest</role-name>

<role-link>Guest</role-link>

</role-mapper>

<role-mapper>

<role-name>power-user</role-name>

<role-link>Power User</role-link>

</role-mapper>

<role-mapper>

<role-name>user</role-name>

<role-link>User</role-link>

</role-mapper>

</liferay-portlet-app>

Here is a basic summary of what some of the elements represents.

portlet-name
The portlet-name element contains the canonical name
of the portlet. This needs to be the same as the portlet-
name given in portlet.xml

icon Path to icon image for this portlet

instanceable Indicates if multiple instances of this portlet can appear
on the same page.

header-
portlet-css

The path to the .css file for this portlet to be included in
the <head> of the page

footer-
portlet-

javascript

The path to the .js file for this portlet, to be included at
the end of the page before </body>

There are many more elements that you should be aware of for
more advanced development. Please see the DTD for this file in the
definitions folder in the Liferay source code for more information.

 Writing the My Greeting Portlet
Now that you familiar with the structure of a portlet, it's time to ac-

tually make it do something useful. Our portlet will have two pages.
view.jsp will display the greeting and provide a link to the edit page.
Edit.jsp will show a form with a text field allowing the greeting to be
changed, along with a link back to the view page. MVCPortlet will han-
dle the rendering of our JSPs, so for this example we won't have to
write a single Java class.

First, we don't want multiple greetings on the same page, so we
are going to make the My Greeting portlet non-instanceable. To do
this, edit liferay-portlet.xml and change the line that says:

 20 Writing the My Greeting Portlet

Portlet Development

<instanceable>true</instanceable>

From true to false.

Next, we will create our templates. Start by editing view.jsp and re-
placing its current contents with the following:

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ page import="javax.portlet.PortletPreferences" %>

<portlet:defineObjects />

<%

PortletPreferences prefs = renderRequest.getPreferences();

String greeting = (String)prefs.getValue(

"greeting", "Hello! Welcome to our portal.");

%>

<p><%= greeting %></p>

<portlet:renderURL var="editGreetingURL">

<portlet:param name="jspPage" value="/edit.jsp" />

</portlet:renderURL>

<p><a href="<%= editGreetingURL %>">Edit greeting</p>

Next, create edit.jsp in the same directory as view.jsp with the fol-
lowing content:

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ page import="com.liferay.portal.kernel.util.ParamUtil" %>

<%@ page import="com.liferay.portal.kernel.util.Validator" %>

<%@ page import="javax.portlet.PortletPreferences" %>

<portlet:defineObjects />

<%

PortletPreferences prefs = renderRequest.getPreferences();

String greeting = ParamUtil.getString(renderRequest, "greeting");

if (Validator.isNotNull(greeting)) {

prefs.setValue("greeting", greeting);

prefs.store();

%>

<p>Greeting saved successfully!</p>

<%

}

%>

<%

greeting = (String)prefs.getValue(

Writing the My Greeting Portlet 21

Portlet Development

"greeting", "Hello! Welcome to our portal.");

%>

<portlet:renderURL var="editGreetingURL">

<portlet:param name="jspPage" value="/edit.jsp" />

</portlet:renderURL>

<aui:form action="<%= editGreetingURL %>" method="post">

<aui:input label="greeting" name="greeting" type="text" value="<%=
greeting %>" />

<aui:button type="submit" />

</aui:form>

<portlet:renderURL var="viewGreetingURL">

<portlet:param name="jspPage" value="/view.jsp" />

</portlet:renderURL>

<p><a href="<%= viewGreetingURL %>">← Back</p>

Deploy the portlet again by entering the command ant deploy in
your my-greeting-portlet folder. Go back to your web browser and re-
fresh the page; you should now be able to use the portlet to save and
display a custom greeting.

Tip: If your portlet deployed successfully, but you don't see
any changes in your browser after refreshing the page, Tom-
cat may have failed to rebuild your JSPs. Simply delete the
work folder in liferay-portal-[version]/tomcat-6.0.26 and re-

fresh the page again to force them to be rebuilt.

There are a few important details to notice in this implementation.
First, the links between pages are created using the <portlet:renderURL>
tag, which is defined by the http://java.sun.com/portlet_2_0 tag library.
These URLs have only one parameter named jspPage, which is used by
MVCPortlet to determine which JSP to render for each request. Second,
notice that the form in edit.jsp has the prefix aui, signifying that it is
part of the Alloy UI tag library. Alloy greatly simplifies the code re-
quired to create the form, by providing tags that will render both the
label and the field at once.

One word of warning about the portlet we have just built. For the
purpose of making this example as simple and easy to follow as possi-
ble, we have not followed any of the best practices of portlet design in
creating it. Please do not use this portlet as a template for creating
your own portlets, but only as a demonstration of how to use MVC-
Portlet's page flow.

 22 Writing the My Greeting Portlet

Portlet Development

 Optional: Adding Friendly URL Mapping
to the Portlet

You will notice that when you click the Edit greeting link, you are
taken to a page with a URL similar to this:

http://localhost:8080/web/guest/home?
p_p_id=mygreeting_WAR_mygreetingportlet&p_p_lifecycle=0&p_p_state=normal&p_p
_mode=view&p_p_col_id=column-1&_mygreeting_WAR_mygreetingportlet_jspPage=
%2Fedit.jsp

In Liferay 6 there is a new feature that requires minimal work to
change this into:

http://localhost:8080/web/guest/home/-/my-greeting/edit

This feature, known as friendly URL mapping, takes unnecessary
parameters out of the URL and allows you to place the important pa-
rameters in the URL path rather than the query string. To add this
functionality, first edit liferay-portlet.xml and add the following lines di-
rectly after </icon> and before <instanceable>. Be sure to remove the
line breaks!

<friendly-url-mapper-class>com.liferay.portal.kernel.portlet.Default\

FriendlyURLMapper</friendly-url-mapper-class>

<friendly-url-mapping>my-greeting</friendly-url-mapping>

<friendly-url-routes>com/sample/mygreeting/portlet/my-greeting-friendly-url\

-routes.xml</friendly-url-routes>

Next, create the file (note the line break):

my-greeting-portlet/docroot/WEB-INF/src/com/sample/mygreeting/portlet/my\

-greeting-friendly-url-routes.xml

Create new directories as necessary. Place the following content
into the new file:

<?xml version="1.0"?>

<!DOCTYPE routes PUBLIC "-//Liferay//DTD Friendly URL Routes 6.0.0//EN"
"http://www.liferay.com/dtd/liferay-friendly-url-routes_6_0_0.dtd">

<routes>

<route>

<pattern>/{jspPageName}</pattern>

<generated-parameter name="jspPage">/{jspPageName}.jsp</generated-
parameter>

</route>

</routes>

Redeploy your portlet, refresh the page, and try clicking either of
the links again. Notice how much shorter and more user-friendly the
URL is, without even having to modify the JSPs. For more information
on friendly URL mapping, please see the fuller discussion of this topic
in Liferay in Action.

Optional: Adding Friendly URL
Mapping to the Portlet

 23

4. 4. CCREATINGREATING L LIFERAYIFERAY
TTHEMESHEMES

Themes are hot deployable plugins which can completely transform
the look and feel of the portal. Theme creators can make themes to
provide an interface that is unique to the site that the portal will serve.
Themes make it possible to change the user interface so completely
that it would be difficult or impossible to tell that the site is running on
Liferay. Liferay provides a well organized, modular structure to its
themes. This allows the theme developer to be able to quickly modify
everything from the border around a portlet window to every object on
the page, because all of the objects are easy to find. Additionally,
theme developers do not have to customize every aspect of their
themes. A theme can inherit the styling, images, and templates from
any of the built in themes, overriding them only where necessary. This
allows themes to be smaller and less cluttered with extraneous data
that already exists in the default theme (such as graphics for emoti-
cons for the message boards portlet).

 Creating a Theme
The process for creating a new theme is nearly identical to the one

for making a portlet. You will need both a project name (without spa-
ces) and a display name (which can have spaces). For example, the
project name could be “deep-blue”, and the theme title “Deep Blue”.
In the terminal, navigate to the themes directory in the Plugins SDK
and enter the following command (Linux and Mac OS X):

./create.sh deep-blue "Deep Blue"

Creating Liferay Themes

On Windows enter the following instead:

create.bat deep-blue "Deep Blue"

This command will create a blank theme in your themes folder. No-
tice that the Plugins SDK automatically appends “-theme” to the
project name when creating this folder.

 Deploying the Theme
Open a terminal window in your themes/deep-blue-theme directory

and enter this command:

ant deploy

You should get a BUILD SUCCESSFUL message, which means that
your theme is now being deployed. If you switch to the terminal win-
dow running Liferay, and wait for a few seconds, you should see the
message “1 theme for deep-blue-theme is available for use”.

Go to your web browser and login to the portal as explained earlier.
Then hover over Manage at the top of the page, and click on Page. Di-
rectly underneath the words Manage Pages select the Look and Feel
tab. Simply click on your theme to activate it.

 Anatomy of a Theme
Custom themes are based on differences from one of several built-

in Liferay themes. By default themes are based on the _styled theme,
which provides only basic styling of portlets. If you open the build.xml
file in your theme's directory, you will see the following:

<project name="theme" basedir="." default="deploy">

<import file="../build-common-theme.xml" />

<property name="theme.parent" value="_styled" />

</project>

The theme.parent property determines which built-in theme your
theme will inherit from. In addition to the _styled theme, you may also
choose to inherit from the _unstyled theme, which contains no styling
whatsoever.

The structure of a theme is designed to separate different types of
resources into easily accessible folders. The full structure of the deep
blue theme is shown below:

/deep-blue-theme/

/docroot/

/WEB-INF/

liferay-plugin-package.properties

/_diffs/ (subfolders not created by default)

/css/

 26 Anatomy of a Theme

Creating Liferay Themes

/images/

/js/

/templates/

/css/

application.css

base.css

custom.css

dockbar.css

extras.css

forms.css

layout.css

main.css

navigation.css

portlet.css

/images/

(many directories)

/js/

main.js

/templates/

init_custom.vm

navigation.vm

portal_normal.vm

portal_pop_up.vm

portlet.vm

You will notice that there is a _diffs folder inside the docroot directo-
ry of your theme; this is where you will place your theme code. You
only need to customize the parts of your theme that will differ from the
parent theme. To do this, you mirror the directory structure of the par-
ent theme inside of the _diffs folder, placing only the folders and files
you need to customize there.

You will also notice that there are several other folders inside doc-
root; these were copied over from the parent theme in your Liferay
bundle when you deployed your theme. You should use these files as
the basis for your modifications. For example, to customize the naviga-
tion, you would copy navigation.vm from deep-blue-
theme/docroot/templates/navigation.vm into deep-blue-

theme/docroot/_diffs/templates folder (you may have to create this folder
first). You can then open this file and customize it to your liking.

For custom styles, create a folder named css inside your _diffs fold-
er and place a single file there called custom.css. This is where you
would put all of your new styles and all of your overrides of the styles
in the parent theme. Custom.css is loaded last, and so styles in this file
are able to override any styles in the parent theme.

Best practice recommends that you make all your custom themes
using only the custom.css file, and that you not override any of the tem-
plates unless absolutely necessary. This will make future upgrades far

Anatomy of a Theme 27

Creating Liferay Themes

easier, as you won't have to manually modify your templates to add
support for new Liferay features.

Whenever you make modifications to your theme, redeploy it by
opening a terminal in themes/deep-blue-theme and entering the command
ant deploy. Wait a few seconds until the theme deploys, and then re-
fresh your browser to see your changes.

Tip: If you wish to see changes even more quickly, it is also
possible to modify you theme directly in your Liferay bundle.
In our example, custom.css is located in liferay-portal-
6.0.4/tomcat-6.0.26/webapps/deep-blue-theme/css. Howev-
er, for modifications made here to appear in your browser as

soon as you refresh the page, you must enable Liferay Developer
Mode. See the Liferay wiki for more information.

Also make sure that you copy any changes you make back into your
_diffs folder, or they will be overwritten when you redeploy your
theme.

 Thumbnails
You will notice that in the Look and Feel settings the Classic theme

has a thumbnail preview of what it looks like, while our theme has only
a broken image. To correct this, take a screenshot of your theme and
save it in _diffs/images with the name thumbnail.png. It must have the ex-
act size of 150 pixels wide by 120 pixels high. You should also save a
larger version in the same directory with the name screenshot.png. Its
size must be exactly 1080 pixels wide by 864 pixels high. After rede-
ploying your theme, it will have a thumbnail preview just like the Clas-
sic theme.

 JavaScript
Liferay now includes its own JavaScript library called Alloy, which is

an extension to Yahoo's YUI3 framework. Developers can take advan-
tage of the full power of either of these frameworks in their themes. In-
side of the main.js file, you will find definitions for three JavaScript call-
backs:

AUI().ready(

function() {

}

);

Liferay.Portlet.ready(

/*

This function gets loaded after each and every portlet on the page.

 28 JavaScript

Creating Liferay Themes

portletId: the current portlet's id

node: the Alloy Node object of the current portlet

*/

function(portletId, node) {

}

);

Liferay.on(

'allPortletsReady',

/*

This function gets loaded when everything, including the portlets, is on

the page.

*/

function() {

}

);

● AUI().ready(fn);

This callback is executed as soon as the HTML in the page has fin-
ished loading (minus any portlets loaded via ajax).

● Liferay.Portlet.ready(fn);

Executed after each portlet on the page has loaded. The callback
receives two parameters: portletId and node. portletId is the id of the
portlet that was just loaded. node is the Alloy Node object of the same
portlet.

● Liferay.on('allPortletsReady', fn);

Executed after everything—including AJAX portlets—has finished
loading.

 Settings
Each theme can define settings to make it configurable. These set-

tings are defined in a file named liferay-look-and-feel.xml inside WEB-INF.
This file does not exist by default, so you should now create it with the
following content:

<?xml version="1.0"?>

<!DOCTYPE look-and-feel PUBLIC "-//Liferay//DTD Look and Feel 6.0.0//EN"
"http://www.liferay.com/dtd/liferay-look-and-feel_6_0_0.dtd">

<look-and-feel>

<compatibility>

<version>6.0.0+</version>

Settings 29

Creating Liferay Themes

</compatibility>

<theme id="deep-blue" name="Deep Blue">

<settings>

<setting key="my-setting" value="my-value" />

</settings>

</theme>

</look-and-feel>

You can define additional settings by adding more <setting> ele-
ments. These settings can be accessed in the theme templates using
the following code:

$theme.getSetting("my-setting")

For example, say we need to create two themes that are exactly
the same except for some changes in the header. One of the themes
has more details while the other is smaller (and takes less screen real
estate). Instead of creating two different themes, we are going to cre-
ate only one and use a setting to choose which header we want.

In the portal_normal.vm template we could write:

#if ($theme.getSetting("header-type") == "detailed")

#parse ("$full_templates_path/header_detailed.vm")

#else

#parse ("$full_templates_path/header_brief.vm")

#end

Then when we write the liferay-look-and-feel.xml, we write two dif-
ferent entries that refer to the same theme but have a different value
for the header-type setting:

<theme id="deep-blue" name="Deep Blue">

<settings>

<setting key="header-type" value="detailed" />

</settings>

</theme>

<theme id="deep-blue-mini" name="Deep Blue Mini">

<settings>

<setting key="header-type" value="brief" />

</settings>

</theme>

 Color Schemes
Color schemes are specified using a CSS class name, with which

you can not only change colors, but also choose different background
images, different border colors, and so on.

In your liferay-look-and-feel.xml, you can define color schemes like
so:

 30 Color Schemes

Creating Liferay Themes

<theme id="deep-blue" name="Deep Blue">

<settings>

<setting key="my-setting" value="my-value" />

</settings>

<color-scheme id="01" name="Day">

<css-class>day</css-class>

<color-scheme-images-path>${images-path}/color_schemes/${css-
class}</color-scheme-images-path>

</color-scheme>

<color-scheme id="02" name="Night">

<css-class>night</css-class>

</color-scheme>

</theme>

Inside of your _diffs/css folder, create a folder called color_schemes.
Inside of that folder, place a .css file for each of your color schemes. In
the case above, we would could either have just one called night.css
and let the default styling handle the first color scheme, or you could
have both day.css and night.css.

Assuming you follow the second route, place the following lines at
the bottom of your custom.css file:

@import url(color_schemes/day.css);

@import url(color_schemes/night.css);

The color scheme CSS class is placed on the <body> element, so
you can use it to identify you styling. In day.css you would prefix all of
your CSS styles like this:

body.day { background-color: #ddf; }

.day a { color: #66a; }

And in night.css you would prefix all of your CSS styles like this:

body.night { background-color: #447; color: #777; }

.night a { color: #bbd; }

You can also create separate thumbnail images for each of your
color schemes. The <color-scheme-images-path> element tells Liferay
where to look for these images (note that you only have to place this
element in one of the color schemes for it to affect both). For our ex-
ample, create the folders _diffs/images/color_schemes/day and _diffs/im-
ages/color_schemes/night. In each of these folders place a thumbnail.png
and screenshot.png file with the same sizes as before.

 Portal Predefined Settings
The portal defines some settings that allow the theme to determine

certain behaviors. So far there are only two predefined settings but
this number may grow in the future. These settings can be modified
from liferay-look-and-feel.xml.

Portal Predefined Settings 31

Creating Liferay Themes

portlet-setup-show-borders-default

If set to false, the portal will turn off borders by default for all the
portlets. The default is true.

Example:

<settings>

<setting key="portlet-setup-show-borders-default" value="false" />

</settings>

This default behavior can be overridden for individual portlets us-
ing:

• liferay-portlet.xml

• Portlet CSS popup setting

bullet-style-options

This setting is used by the Navigation portlet to determine the CSS
class name of the list of pages. The value must be a comma separated
list of valid bullet styles to be used.

Example:

<settings>

<setting key="bullet-style-options" value="classic,modern,tablemenu" />

</settings>

The bullet style can be changed by the user in the Navigation port-
let configuration. The chosen style will be applied as a CSS class on the
<div> containing the navigation. This class will be named in the fol-
lowing pattern:

.nav-menu-style-{BULLET_STYLE_OPTION} {

... CSS selectors ...

}

Here is an example of the HTML code that you would need to style
through the CSS code. In this case the bullet style option is modern:

<div class="nav-menu nav-menu-style-modern">

<ul class="breadcrumbs lfr-component">

...

</div>

Using CSS and/or some unobtrusive Javascript it's possible to im-
plement any type of menu.

 32 Portal Predefined Settings

5. 5. HHOOKSOOKS

Liferay Hooks are the newest type of plugin which Liferay Portal
supports. They were introduced late in the development cycle for Lifer-
ay Portal 5.1.x, and are now the preferred way to customize Liferay. As
with portlets, layout templates, and themes, they are created using the
Plugins SDK.

Hooks can fill a wide variety of the common needs for overriding
Liferay core functionality. Whenever possible, hooks should be used in
place of Ext plugins, as they are both hot-deployable and more forward
compatible. Some common scenarios which require the use of a hook
are the need to perform custom actions on portal startup or user login,
overwrite or extend portal JSPs, modify portal properties, or replace a
portal service with your own implementation.

 Creating a Hook
Hooks are stored within the hooks directory of the plugins directo-

ry. Navigate to this directory in terminal and enter the following com-
mand to create a new hook (Linux and Mac OS X):

./create.sh example "Example"

On Windows enter the following instead:

create.bat example "Example"

You should get a BUILD SUCCESSFUL message from Ant, and there
will now be a new folder inside of the hooks folder in your Plugins SDK.
Notice that the Plugins SDK automatically appends “-hook” to the
project name when creating this folder.

Hooks

 Deploying the Hook
Open a terminal window in your hooks/example-hook directory and

enter this command:

ant deploy

You should get a BUILD SUCCESSFUL message, which means that
your hook is now being deployed. If you switch to the terminal window
running Liferay, and wait for a few seconds, you should see the mes-
sage “Hook for example-hook is available for use.” However, unlike
portlets or themes, your new hook doesn't actually do anything yet.

 Overriding a JSP
One of the simplest tasks a hook can perform is replacing a portal

JSP. In this example we will modify the Terms of Use page. First, create
the directory hooks/example-hook/docroot/META-INF/custom_jsps. You will
need to create the META-INF directory as well. Next, edit hooks/exam-
ple-hook/docroot/WEB-INF/liferay-hook.xml, and add the following between
<hook></hook>:

<custom-jsp-dir>/META-INF/custom_jsps</custom-jsp-dir>

Now, any JSP you place inside the custom_jsps directory will re-
place its original inside your Liferay instance when your hook is de-
ployed. The directory structure inside this folder must mirror the one
within liferay-portal-[version]/tomcat-6.0.26/webapps/ROOT. To over-
ride the Terms of Use, copy liferay-portal-[version]/tomcat-6.0.26/we-
bapps/ROOT/html/portal/terms_of_use.jsp to hooks/example-
hook/docroot/META-INF/custom_jsps/html/portal/terms_of_use.jsp. You will
have to create all the intervening directories first.

Next, open your copy of the terms_of_use.jsp and make a few
changes. Deploy your hook and wait until it is deployed successfully.
Then, create a new user and try to log in. When you get to the Terms
of Use page, you will see your version instead of the default. Please
note that this is not the recommended way of changing the Terms of
Use, it is simply a convenient example. You can actually replace the
Terms of Use with web content by setting two properties in portal-ex-
t.properties. A hook is not necessary.

If you look inside the liferay-portal-[version]/tomcat-
6.0.26/webapps/ROOT/html/portal directory you will see that there are now
two terms of use files, one called terms_of_use.jsp and another called
terms_of_use.portal.jsp. terms_of_use.jsp is the version from your hook,
while terms_of_use.portal.jsp is the original. If you now undeploy your
hook by deleting its directory in webapps, you will see that your replace-
ment JSP is removed and the .portal.jsp file is renamed again to take
its place. In this manner, you can override any JSP in the Liferay core,
while also being able to revert your changes by undeploying your

 34 Overriding a JSP

Hooks

hook. Note however that it is not possible to override the same JSP
from multiple hooks, as Liferay will not know which version to use.

Tip: If you wish to make your JSP modifications even less in-
vasive, it is possible to render the original JSP into a string,
and then modify it dynamically afterwards. This makes it
possible to change minor elements of a JSP, such as adding
a new heading or button, without needing to worry modify-

ing your hook every time you upgrade Liferay. For an example of this
technique, checkout plugins/trunk from the Liferay public Subversion
repository, and look in the hook so-hook.

 Performing a Custom Action
Another common use of hooks is to perform custom actions on cer-

tain common portal events, such as user log in or system startup. The
actions that are performed on each of these events are defined in por-
tal.properties, which means that in order to create a custom action we
will also need to extend this file. Fortunately, this is extremely easy us-
ing a hook.

First, create the directory example-hook/docroot/WEB-
INF/src/com/sample/hook, and create the file LoginAction.java inside it with
the following content:

package com.sample.hook;

import com.liferay.portal.kernel.events.Action;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class LoginAction extends Action {

public void run(HttpServletRequest req, HttpServletResponse res) {

System.out.println("## My custom login action");

}

}

Next, create the file portal.properties inside example-hook/docroot/WE-
B-INF/src with the following content:

login.events.pre=com.sample.hook.LoginAction

Finally, edit liferay-hook.xml inside example-hook/docroot/WEB-INF and
add the following line above <custom-jsp-dir>:

<portal-properties>portal.properties</portal-properties>

Deploy your hook again and wait for it to complete. The log out and
back in, and you should see our custom message in the terminal win-
dow running Liferay.

Custom actions are not the only extensions that can be made by

Performing a Custom Action 35

Hooks

There are several other events that you can define custom actions
for using hooks. Some of these actions must extend from com.liferay.-
portal.kernel.events.Action, while others must extend com.liferay.por-
tal.struts.SimpleAction. For more information on these events, see por-
tal.properties in the Liferay source code.

 Extending and Overriding portal.properties
In our hook, we modified the login.events.pre portal property. Since

this property accepts a list of values, our value was appended to the
existing values. It is safe to modify these portal properties from multi-
ple hooks, and they will not interfere with one another. Some portal
properties only accept a single value, such as the terms.of.use.required
property, which can be either true or false. You should only modify
these properties from one hook, otherwise Liferay will not know which
value to use. You can determine which type a particular property is by
looking in portal.properties.

Not all portal properties can be overridden in a hook. A complete
list of the available properties can be found in the DTD for lifer-
ay-hook.xml in the definitions folder of the Liferay source code. In addi-
tion to defining custom actions, hooks can also override portal proper-
ties to define model listeners, validators, generators, and content sani-
tizers.

 Overriding a Portal Service
In Liferay, the service classes used to manage database interaction

are accessed through utility classes that enable static access the the
service methods. For instance, the user service is defined in the inter-
face UserLocalService and implemented in UserLocalServiceImpl. User-
LocalServiceUtil contains a single instance of a class that implements
UserLocalService, which by default is UserLocalServiceImpl. This instance is
injected dynamically at runtime using a Spring IOC bean reference.
You can see the definition of this reference in the file portal-spring.xml
in the Liferay source code:

<bean id="com.liferay.portal.service.UserLocalService"
class="com.liferay.portal.service.impl.UserLocalServiceImpl" />

The advantage of this design is that it makes it possible to replace
UserLocalServiceImpl (or any other portal service) with your own imple-
mentation in a hook.

To make this task easier, Liferay automatically generates dummy
wrapper classes for all of its services – UserLocalServiceWrapper in this
case. To modify the functionality of UserLocalService from our hook, all
we have to do is create a class that extends from UserLocalServiceWrap-
per, override some of its methods, and then instruct Liferay to inject
our class into UserLocalServiceUtil.

 36 Overriding a Portal Service

Hooks

First, inside example-hook/docroot/WEB-INF/src/com/sample/hook create a
new file called MyUserLocalServiceImpl.java with the following content:

package com.sample.hook;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.exception.SystemException;

import com.liferay.portal.model.User;

import com.liferay.portal.service.UserLocalService;

import com.liferay.portal.service.UserLocalServiceWrapper;

public class MyUserLocalServiceImpl extends UserLocalServiceWrapper {

public MyUserLocalServiceImpl(UserLocalService userLocalService) {

super(userLocalService);

}

public User getUserById(long userId)

throws PortalException, SystemException {

System.out.println(

"## MyUserLocalServiceImpl.getUserById(" + userId + ")");

return super.getUserById(userId);

}

}

Next, edit liferay-hook.xml inside example-hook/docroot/WEB-INF and add
the following after </custom-jsp-dir>:

<service>

<service-type>com.liferay.portal.service.UserLocalService</service-type>

<service-impl>com.sample.hook.MyUserLocalServiceImpl</service-impl>

</service>

Redeploy your hook, then refresh your browser. In the terminal win-
dow containing Liferay you should see the messages printed by our
hook.

 Overriding a Language.properties File
In addition to the three capabilities of hooks already discussed, it is

also possible to override Language.properties files from a hook, allowing
you to change any of the messages displayed by Liferay to suit your
needs. The process is extremely similar to any of the ones we have
just described. To see an example of this technique, checkout
plugins/trunk from the Liferay public Subversion repository, and exam-
ine the hook so-hook.

Overriding a Language.properties
File

 37

6. 6. EEXTXT PLUGINSPLUGINS

Ext plugins provide the most powerful methods of extending Lifer-
ay. This comes with some tradeoffs in complexity, and so Ext plugins
are designed to be used only in special scenarios in which all other
plugin types cannot meet the needs of the project.

Before deciding to use an Ext plugin it's important to understand
the costs of using such a powerful tool. The main one is the cost in
terms of maintenance. Because Ext plugins allow using internal APIs or
even overwriting files provided in the Liferay core, it's necessary to re-
view all the changes done when updating to a new version of Liferay
(even if it's a maintenance version or a service pack). Also, unlike the
other types of plugins, Ext plugins require the server to be rebooted af-
ter deployment, as well as requiring additional steps when deploying
or redeploying to production systems.

The main use cases in which an Ext plugin can be needed are:

• Customizing portal.properties that are not supported by
Hook Plugins

• Customizing Struts Actions

• Providing custom implementations for any of the Liferay
beans declared in Liferay's Spring files (use service wrap-
pers from a hook instead if possible)

• Adding JSPs that are referenced from portal properties that
can only be changed from an ext plugin (use hook plugin if
possible)

• Direct overwriting of a class (not recommended unless it's
strictly necessary)

Ext plugins

 Creating an Ext plugin
Ext plugins are stored within the ext directory of the Plugins SDK.

Navigate to this directory in a terminal and enter the following com-
mand to create a new Ext plugin (Linux and Mac OS X):

./create.sh example "Example"

On Windows enter the following instead:

create.bat example "Example"

You should get a BUILD SUCCESSFUL message from Ant, and there
will now be a new folder inside of the ext folder in your Plugins SDK.
Notice that the Plugins SDK automatically appends “-ext” to the project
name when creating this folder.

Once the target has been executed successfully you will find a new
folder called example-ext with the following structure:

/ext-example/

 /docroot/

 /WEB-INF/

 /sql/

 /ext-impl/

 /src/

 /ext-lib/

 /global/

 /portal/

 /ext-service/

 /src/

 /ext-util-bridges/

 /src/

 /ext-util-java/

 /src/

 /ext-util-taglib/

 /src/

 /ext-web/

The most significant directories in this structure are the ones inside
the docroot/WEB-INF directory. In particular you should be familiar with
the following directories:

• ext-impl/src: Contains the portal-ext.properties configura-
tion file, custom implementation classes, and in advanced
scenarios, classes that override core classes within por-
tal-impl.jar.

• ext-lib/global: Place here any libraries that should be
copied to the global classloader of the application server

 40 Creating an Ext plugin

Ext plugins

upon deployment of the ext plugin.

• ext-lib/portal: Place here any libraries that should be
copied inside Liferay's main application. Usually this li-
braries are needed because they are invoked from the
classes added within ext-impl/src.

• ext-service/src: Place here any classes that should be
available to other plugins. When using Service Builder, it
will put the interfaces of each service here. Also in ad-
vanced scenarios, this directory will contain classes that
overwrite the classes of portal-service.jar.

• ext-web/docroot: Contains configuration files for the web
application, including WEB-INF/struts-config-ext.xml which will
allow customizing Liferay's own core struts actions. You
can also place any JSPs needed by your customizations
here.

• Other: ext-util-bridges, ext-util-java and ext-util-taglib are
only needed in advanced scenarios in which you need to
customize the classes of three libraries provided with Lifer-
ay: util-bridges.jar, util-java.jar and util-taglib.jar respec-
tively. In most scenarios you can just ignore these directo-
ries.

By default, several files are added to the plugin. Here are the most
significant ones:

• Inside docroot/WEB-INF/ext-impl/src:

◦ portal-ext.properties: this file can be used to overwrite
any configuration property of Liferay, even those that
cannot be overridden by a hook plugin (which is always
preferred when possible). Note that if this file is includ-
ed it will be read instead of any other portal-ext.proper-
ties in the application server. Because of that you may
need to copy into it the properties related to the data-
base connection, file system patches, etc.

• Inside docroot/WEB-INF/ext-web/docroot/WEB-INF:

◦ portlet-ext.xml: Can be used to overwrite the definition
of a Liferay portlet. In order to do this, copy the com-
plete definition of the desired portlet from portlet-cus-
tom.xml within Liferay's source code and then apply the
necessary changes.

◦ liferay-portlet-ext.xml: Similar to the file above, but for
the additional definition elements that are specific to
Liferay. In order to override it, copy the complete defi-
nition of the desired portlet from liferay-portlet.xml

Creating an Ext plugin 41

Ext plugins

within Liferay's source code and then apply the neces-
sary changes.

◦ struts-config-ext.xml and tiles-defs-ext.xml: Can be used
to customize the struts actions used by Liferay's core
portlets.

Tip: after creating an Ext plugin, remove all of the files added by de-
fault that are not necessary for the extension. This is important be-
cause Liferay keeps track of the files deployed by each Ext plugin and
it won't allow deploying two Ext plugins if they override the same file
to avoid collisions. By removing any files not really necessary from an
ext plugin it will be easier to use along with other Ext plugins.

 Developing an Ext plugin
Developing an Ext plugin is slightly different than working with oth-

er plugin types. The main reason for the difference is that an Ext plug-
in when deployed will make changes to the Liferay web application it-
self, instead of staying as a separate component that can be removed
at any time. It's important to remember that once an Ext plugin has
been deployed, some of its files are copied inside the Liferay installa-
tion, so the only way to remove its changes is to redeploy an unmodi-
fied Liferay application again.

The Plugins SDK contains several Ant targets that help with the
task of deploying and redeploying during the development phase. In
order to do this it requires a .zip file of a Tomcat 6 based Liferay bun-
dle. The Ant targets will unzip and clean up this installation whenever
needed to guarantee that any change done to the Ext plugin during
development is properly applied and previous changes that have been
removed are not left behind. This is part of the added complexity when
using Ext plugins, and so it is recommended to use another plugin type
to accomplish your goals if it is at all possible.

 Set up
Before attempting to deploy an Ext plugin, it's necessary to edit the

file build.{username}.properties in the root folder of the Plugins SDK. If
this file doesn't exist yet you should create it. Substitute {username} with
the your user ID on your computer. Once the file is open, add the fol-
lowing three properties to the file, making sure the individual paths
point to the right locations on your system:

app.server.dir={...}/liferay-portal-6.0.5/tomcat-6.0.26

app.server.zip.name={...}/liferay-portal-tomcat-6.0.5.zip

ext.work.dir={...}/work

app.server.zip.name should point to a .zip with a bundle of Liferay.
The directory denoted by the property ext.work.dir will be used to unzip

 42 Developing an Ext plugin

Ext plugins

the bundle as well as remove it and unzip again as needed. app.serv-
er.dir should point to the Tomcat directory inside the work directory.

For example, if ext.work.dir points to C:\ext-work, and app.server.zip.-
name points to C:\files\liferay-portal-tomcat-6.0-${lp.version}.zip, then ap-
p.server.dir should point to C:\ext-work\liferay-portal-${lp.version}\tom-
cat-6.0.18.

 Initial deployment
Once the environment is set up, we are ready to start customizing.

We'll show the full process with a simple example, customizing the
sections of a user profile. Liferay allows doing that through the por-
tal-ext.properties configuration file, but we'll be changing a property
that cannot be changed from a hook plugin. In order to make this
change, open the docroot/WEB-INF/ext-impl/src/portal-ext.properties file
and paste the following contents inside:

users.form.update.main=details,password,organizations,communities,roles

This line removes the sections for user groups, pages and catego-
rizations. We might want to make this change because we don't want
them in our portal.

Once we've made this change, we are ready to deploy. Open a ter-
minal window in your ext/example-ext directory and enter this command:

ant deploy

You should get a BUILD SUCCESSFUL message, which means that
your plugin is now being deployed. If you switch to the terminal win-
dow running Liferay and wait for a few seconds, you should see the
message “Extension environment for example-ext has been applied.
You must reboot the server and redeploy all other plugins.” Redeploy-
ing all other plugins is not strictly mandatory, but you should do it if
some changes applied through the Ext plugin may affect the deploy-
ment process itself.

The ant deploy target builds a .war file with all the changes you have
made and copies them to the auto deploy directory inside the Liferay
installation. When the server starts, it detects the .war file, inspects it,
and copies its content to the appropriate destinations within the de-
ployed and running Liferay inside your application server. You must
now restart your application server.

Once the server has started, log in as an administrator and go to
Control Panel -> Users. Edit an existing user and verify that the right
navigation menu only shows the five sections that were referenced
from the users.form.update.main property.

Once we've applied this simple modification to Liferay, we can go
ahead with a slightly more complex customization. This will give us an

Developing an Ext plugin 43

Ext plugins

opportunity to learn the proper way to redeploy an Ext plugin, which is
different from the initial deployment.

For this example we'll customize the details view of the user profile.
We could do that just by overwriting its JSP, but this time we'll use a
more powerful method which also allows adding new sections or even
merging the existing ones. Liferay allows referring to custom sections
from the portal-ext.properties and implementing them just by creating a
JSP. In our case we'll modify the property users.form.update.main once
again to set the following value:

users.form.update.main=basic,password,organizations,communities,roles

That is, we removed the section details and added a new custom
one called basic. When Liferay's user administration reads this proper-
ty it looks for the implementation of each section based on the follow-
ing conventions:

• The section should be implemented in a JSP inside the di-
rectory: html/portlet/enterprise_admin/user

• The name of the JSP should be like the name of the section
plus the .jsp extension. There is one exception. If the sec-
tion name has a dash sign (“-”), it will be converted to an
underscore sign (“_”). For example, if the section is called
my-info, the JSP should be named my_info.jsp. This is done
to comply to common standards of JSP naming.

• The name of the section that will be shown to the user will
be looked for in the language bundles. When using a
key/value that is not already among the ones included with
Liferay, you should add it to the Language-ext.properties and
each of the language variants for which we want to provide
a translation. Within the Ext plugin these files should be
placed within ext-impl/src.

In our example, we'll need to create a file within the Ext plugin in
the following path:

ext-web/docroot/html/portlet/enterprise_admin/user/basic.jsp

For the contents of the file, you can write them from scratch or
make a copy of the details.jsp file from Liferay's source code and modi-
fy from there. In this case we've decided to do the latter and then re-
move some fields to simplify the creation of a user. The result is this:

<%@ include file="/html/portlet/enterprise_admin/init.jsp" %>

<%

User selUser = (User)request.getAttribute("user.selUser");

%>

<liferay-ui:error-marker key="errorSection" value="details" />

 44 Developing an Ext plugin

Ext plugins

<aui:model-context bean="<%= selUser %>" model="<%= User.class %>" />

<h3><liferay-ui:message key="details" /></h3>

<aui:fieldset column="<%= true %>" cssClass="aui-w50">

<liferay-ui:error exception="<%= DuplicateUserScreenNameException.class
%>"

 message="the-screen-name-you-requested-is-already-
taken" />

<liferay-ui:error exception="<%= ReservedUserScreenNameException.class
%>"

 message="the-screen-name-you-requested-is-
reserved" />

<liferay-ui:error exception="<%= UserScreenNameException.class %>"

 message="please-enter-a-valid-screen-name" />

<aui:input name="screenName" />

<liferay-ui:error exception="<%=
DuplicateUserEmailAddressException.class %>"

 message="the-email-address-you-requested-is-already-
taken" />

<liferay-ui:error exception="<%= ReservedUserEmailAddressException.class
%>"

 message="the-email-address-you-requested-is-reserved"
/>

<liferay-ui:error exception="<%= UserEmailAddressException.class %>"

 message="please-enter-a-valid-email-address" />

<aui:input name="emailAddress" />

<liferay-ui:error exception="<%= ContactFirstNameException.class %>"

 message="please-enter-a-valid-first-name" />

<liferay-ui:error exception="<%= ContactFullNameException.class %>" m

 essage="please-enter-a-valid-first-middle-and-last-
name" />

<aui:input name="firstName" />

<liferay-ui:error exception="<%= ContactLastNameException.class %>"

 message="please-enter-a-valid-last-name" />

<aui:input name="lastName" />

</aui:fieldset>

In our case, we don't need to add a new key to Language-ext.proper-
ties, because “basic” is already included in Liferay's language bundle.
We are ready to redeploy.

Developing an Ext plugin 45

Ext plugins

 Redeployment
So far, the process has been very similar to that of other plugin

types. The differences start when redeploying an Ext plugin that has
already been deployed. As mentioned earlier, when the plugin was first
deployed some of its files were copied within the Liferay installation.
After making any change to the plugin the recommended steps to re-
deploy are first to shut down the server, and then to execute the fol-
lowing ant targets:

ant clean-app-server direct-deploy

These ant targets first remove the work bundle (unzipping the one
that was referred to through build.{username}.properties), and then de-
ploy all the changes directly to the appropriate directories. The direc-
t-deploy target is faster because the changes are applied directly.,
while the Liferay server does it on start up if you use the deploy target.
For that reason it is usually preferred during development.

You can deploy several Ext plugins to the same server, but you will
have to redeploy each of them after executing the clean-app-server tar-
get.

Once you have finished the development of the plugin you can exe-
cute the following ant target to generate a .war file for distribution:

ant war

The file will be available within the dist directory in the root of the
plugins SDK.

 Deploying in production
In production or pre-production environments it's often not possible

to use Ant to deploy web applications. Also, some application servers
such as WebSphere or Weblogic have their own deployment tools and
it isn't possible to use Liferay's autodeploy process. This section de-
scribes two methods for deploying and redeploying Ext plugins in pro-
duction that can be used in each of these scenarios.

 Method 1: Redeploying Liferay's web
application

This method can be used in any application server that supports
auto deploy, such as Tomcat or JBoss. Its main benefit is that the only
artifact that needs to be transferred to the production system is the
.war file which the Ext plugin produced using the ant war target, which is
usually a small file. Here are the steps that need to be executed on the
server:

1. Redeploy Liferay. To do this, follow the same steps you

 46 Deploying in production

Ext plugins

used when first deploying Liferay on the app server. If you
are using a bundle, you can just unzip the bundle again. If
you've installed Liferay manually on an existing application
server, you'll need to redeploy the .war file and copy the
global libraries to the appropriate directory within the ap-
plication server. If this is the first time the Ext plugin is de-
ployed, you can skip this step.

2. Copy the Ext plugin .war into the auto deploy directory. In a
bundle, this directory is in the root of the unzipped bundle
called deploy.

3. Once the Ext plugin is detected and deployed by Liferay,
restart the Liferay server.

 Method 2: Generate an aggregated WAR file
This method can be used for application servers that do not sup-

port auto deploy, such as WebSphere or Weblogic. Its main benefit is
that all Ext plugins are merged before deployment to production, so a
single .war file will contain Liferay plus the changes from one or more
Ext plugins. Before deploying the .war file, you'll need to copy the de-
pendency .jars for both Liferay and the Ext plugin to the global appli-
cation server class loader in the production server. This location varies
from server to server; please see the Liferay Portal Administrator's
Guide for further details for your application server.

To create the aggregated .war file, deploy the Ext plugin first to the
Liferay bundle you're using in your development environment. Once
it's deployed, create a .war file by zipping the webapps/ROOT folder of Tom-
cat. Also, copy all the libraries from the lib/ext directory of Tomcat that
are associated to all the Ext plugins to your application server's global
classpath, as noted above. These steps will be automated with Ant tar-
gets in the next version of Liferay, but for now, they need to be done
manually.

Once you have the aggregated .war file follow these steps on the
server:

1. Redeploy Liferay using the aggregated WAR file.

2. Stop the server and copy the new version of the global li-
braries to the appropriate directory in the application serv-
er.

Deploying in production 47

 Migrating old extension environments
Ext plugins have been created as an evolution of the extension environ-

ment provided in Liferay 5.2 and previous versions of Liferay. Because of this a
common need for projects upgrading from previous versions might be to mi-
grate Extension environments into Ext plugins. The good news is that this task
is automated and thus relatively easy.

Tip: When migrating an extension environment, it's worth considering if all or
at least some of its features can be moved into other types of plugins such as
portlets and hooks. The benefit of using portlets and hooks is that since they
are focused on specific goals they are easier to learn. Additionally they are
cheaper to maintain since they are not as affected by changes in the Liferay
platform when new versions are released.

The process of migrating consists of executing a target within the ext direc-
tory from Plugins SDK, pointing to the old extension environment and naming
the new plugin:

ant upgrade-ext -Dext.dir=/projects/liferay/ext -Dext.name=my-ext
-Dext.display.name="My Ext"

Here is a description of the three parameters used:

• ext.dir is a command line argument to the location of the old Exten-
sion Environment.

• ext.name is the name of the Ext plugin that you want to create

• ext.display.name is the display name

After executing the target you should see the logs of several copy opera-
tions that will take files from the extension environment and copy them into
the equivalent directory within the Ext plugin (read the section “Creating an
Ext plugin” for an explanation of the main directories within the plugin).

When the migration process is complete, some additional tasks will be
needed to upgrade the code to the new version of Liferay. Some of the most
typical tasks are:

• Review the uses of Liferay's APIs and adapt them accordingly.

• Review the changes to JSPs and merge them with the changes
done to those JSPs in the new Liferay version.

• When using Service Builder you will need to run ant build-service
again. It's also recommended to consider moving this code to a
portlet plugin, because it is now as powerful and allows for greater
modularity and maintainability.

• If you've implemented portlets in Ext, migrate them to portlet plug-
ins, as this capability is deprecated and is not guaranteed to be
available in future releases.

 Conclusions
Ext plugins are a very powerful way of extending Liferay. There are no lim-

its in what can be customized using them and for that reason they have to be
used carefully. If you find yourself using an Ext plugin, verify if all or part of the

desired functionality can be implemented through portlets, hooks or
web plugins instead.

If you really need to use an Ext plugin make it as small as possible
and make sure you follow the instructions in this guide carefully to
avoid issues.

7. 7. LLIFERAYIFERAY F FRAMEWORKSRAMEWORKS

This final chapter will provide you with a brief overview of several
of the essential frameworks and services in Liferay. For more detailed
information about any of these topics, please see Liferay in Action, or
even check out a copy of the Liferay source code to see how they are
used in practice.

 Service Builder
Service Builder is a tool built by Liferay to automate the creation of

interfaces and classes for database persistence, local and remote ser-
vices. Service Builder will generated most of the common code needed
to implement find, create, update, and delete operations on the data-
base, allowing you to focus on the higher level aspects of service de-
sign.

Tip: A “service” in Liferay is simply a class or set of classes
designed to handle retrieving and storing data classes. A lo-
cal service is used by code running in the local instance of
Liferay, while a remote service can be accessed from any-
where over the internet or your local network. Remote ser-

vices support SOAP, JSON, and Java RMI.

 Define the Database Structure
The first step in using Service Builder is to define your model class-

es and their attributes in a service.xml file. For convenience, we will de-
fine the service within the my-greeting portlet, although it should be
placed inside a new portlet. Create a file named service.xml in
portlets/my-greeting-portlet/docroot/WEB-INF inside the Plugins SDK and

Liferay Frameworks

add the following content:

<?xml version="1.0"?>

<!DOCTYPE service-builder PUBLIC "-//Liferay//DTD Service Builder 6.0.0//EN"
"http://www.liferay.com/dtd/liferay-service-builder_6_0_0.dtd">

<service-builder package-path="com.sample.portlet.library">

<namespace>Library</namespace>

<entity name="Book" local-service="true" remote-service="true">

<!-- PK fields -->

<column name="bookId" type="long" primary="true" />

<!-- Group instance -->

<column name="groupId" type="long" />

<!-- Audit fields -->

<column name="companyId" type="long" />

<column name="userId" type="long" />

<column name="userName" type="String" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

<!-- Other fields -->

<column name="title" type="String" />

</entity>

</service-builder>

 Overview of service.xml
<service-builder package-path="com.sample.portlet.library">

This specifies the package path that the class will generate to. In
this example, classes will generate to WEB-INF/src/com/sample/portlet/li-
brary/

<namespace>Library</namespace>

The namespace element must be a unique namespace for this
component. Table names will be prepended with this namepace.

<entity name="Book" local-service="true" remote-service="false">

The entity name is the database table you want to create.

<column name="title" type="String" />

Columns specified in service.xml will be created in the database with
a data type appropriate to the Java type. Accessors will be automatical-

 52 Service Builder

Liferay Frameworks

ly generated for these attributes in the model class.

 Generate the Service
Open a terminal window in your portlets/my-greeting-portlet directo-

ry and enter this command:

ant build-service

The service has been generated successfully when you see “BUILD
SUCCESSFUL.” In the terminal window, you should see that a large
number of files have been generated. An overview of these files is pro-
vided below:

• Persistance

◦ BookPersistence - book persistence interface @generated

◦ BookPersistenceImpl - book persistence @generated

◦ BookUtil - book persistence util, instances BookPersisten-
ceImpl @generated

• Local Service

◦ BookLocalService - local service interface @generated

◦ BookLocalServiceBaseImpl - local service base @generated
@abstract

◦ BookLocalServiceImpl - local service

◦ BookLocalServiceUtil - local service util, instances BookLo-
calServiceImpl @generated

◦ BookLocalServiceWrapper - local service wrapper, wraps
BookLocalServiceImpl @generated

• Remote Service

◦ BookService - remote service interface @generated

◦ BookServiceBaseImpl - remote service base @generated
@abstract

◦ BookServiceImpl - remove service

◦ BookServiceUtil - remote service util, instances BookServi-
ceImpl @generated

◦ BookServiceWrapper - remote service wrapper, wraps
BookServiceImpl @generated

◦ BookServiceSoap - soap remote service, proxies BookSer-
viceUtil @generated

◦ BookSoap - soap book model, similar to BookModelImpl,

Service Builder 53

Liferay Frameworks

does not implement Book @generated

◦ BookServiceHttp - http remote service, proxies BookSer-
viceUtil @generated

◦ BookJSONSerializer - json serializer, converts Book to JSON
array @generated

• Model

◦ BookModel - book base model interface @generated

◦ BookModelImpl - book base model @generated

◦ Book - book model interface @generated

◦ BookImpl - book model

◦ BookWrapper - book wrapper, wraps Book @generated

 Write the Local Service Class
In the file overview above, you will see that BookLocalService is

the interface for the local service. It contains the signatures of every
method in BookLocalServiceBaseImpl and BookLocalServiceImpl.
BookLocalServiceBaseImpl contains a few automatically generated
methods providing common functionality. Since this class is generated,
you should never modify it, or your changes will be overwritten the
next time you run Service Builder. Instead, all custom code should be
placed in BookLocalServiceImpl.

Open the following file:

/docroot/WEB-INF/src/com/sample/portlet/library/service/impl/BookLo-
calServiceImpl.java

We will be adding the database interaction methods to this service
layer class. Add the following method to the BookLocalServiceImpl
class:

public Book addBook(long userId, String title)

throws PortalException, SystemException {

User user = UserUtil.findByPrimaryKey(userId);

Date now = new Date();

long bookId = CounterLocalServiceUtil.increment(Book.class.getName());

Book book = bookPersistence.create(bookId);

book.setTitle(title);

book.setCompanyId(user.getCompanyId());

book.setUserId(user.getUserId());

book.setUserName(user.getFullName());

book.setCreateDate(now);

 54 Service Builder

Liferay Frameworks

book.setModifiedDate(now);

book.setTitle(title);

return bookPersistence.update(book);

}

Before you can use this new method, you must add its signature to
the BookLocalService interface by running service builder again.

Navigate to the root folder of your portlet in the terminal and run:

ant build-service

Service Builder looks through BookLocalServiceImpl and auto-
matically copies the signatures of each method into the interface. You
can now add a new book to the database by making the following call

BookLocalServiceUtil.addBook(userId, “A new title”);

 Built-In Liferay Services
In addition to the services you create using Service Builder, your

portlets may also access a variety of services built into Liferay. These
include UserService, OrganizationService, GroupService, CompanyService, Image-
Service, LayoutService, OrganizationService, PermissionService, UserGroupSer-
vice, and RoleService. For more information on these services, see Lifer-
ay in Action and Liferay's Javadocs.

 Security and Permissions
Liferay implements a fine-grained permissions system, which devel-

opers can use to implement access security in their custom portlets.
This section of the document provides an overview of the Liferay per-
missions system, and how to implement it in a your own portlets.

 Overview
Adding permissions to custom portlets consists of four main steps

(also known as DRAC):

1. Define all resources and their permissions.

2. Register all the resources defined in step 1 in the permis-
sions system. This is also known as “adding resources.”

3. Associate the necessary permissions with resources.

4. Check permission before returning resources.

 Implementing Permissions
Before you can add permissions to a portlet, two critical terms must

Security and Permissions 55

Liferay Frameworks

be defined.

Resource - A generic term for any object represented in the portal.
Examples of resources include portlets (e.g., Message Boards, Calen-
dar, etc.), Java classes (e.g., Message Board Topics, Calendar Events,
etc.), and files (e.g., documents, images, etc.)

Permission - An action acting on a resource. For example, the
view in “viewing the calendar portlet” is defined as a permission in Lif-
eray.

Keep in mind that permissions for a portlet resource are imple-
mented a little differently from other resources such as Java classes
and files. In each of the subsections below, the permission implemen-
tation for the portlet resource is explained first, then the model (and
file) resource.

The first step in implementing permissions is to define your re-
sources and permissions. You can see examples of how this is accom-
plished for the built-in portlets by checking out a copy of the Liferay
source code and looking in the portal-impl/src/resource-actions directory.
For an example of how permissions work in the context of a portlet
plugin, checkout plugins/trunk from the Liferay public Subversion repos-
itory, and look in the portlet sample-permissions-portlet.

Let’s take a look at blogs.xml in portal-impl/src/resource-actions and
see how the blogs portlet defines these resources and actions.

<?xml version="1.0"?>

<resource-action-mapping>

<portlet-resource>

<portlet-name>33</portlet-name>

<permissions>

<supports>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<community-defaults>

<action-key>VIEW</action-key>

</community-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

</permissions>

 56 Security and Permissions

Liferay Frameworks

</portlet-resource>

<model-resource>

<model-name>com.liferay.portlet.blogs</model-name>

<portlet-ref>

<portlet-name>33</portlet-name>

</portlet-ref>

<permissions>

<supports>

<action-key>ADD_ENTRY</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

</supports>

<community-defaults />

<guest-defaults />

<guest-unsupported>

<action-key>ADD_ENTRY</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

<model-resource>

<model-name>com.liferay.portlet.blogs.model.BlogsEntry</model-name>

<portlet-ref>

<portlet-name>33</portlet-name>

</portlet-ref>

<permissions>

<supports>

<action-key>ADD_DISCUSSION</action-key>

<action-key>DELETE</action-key>

<action-key>DELETE_DISCUSSION</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>UPDATE_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</supports>

<community-defaults>

<action-key>ADD_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</community-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_DISCUSSION</action-key>

<action-key>DELETE</action-key>

<action-key>DELETE_DISCUSSION</action-key>

Security and Permissions 57

Liferay Frameworks

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>UPDATE_DISCUSSION</action-key>

</guest-unsupported>

</permissions>

...

</model-resource>

</resource-action-mapping>

Permissions in the blogs portlet are defined at several different lev-
els, coinciding to the different sections of the XML file. First, in the
<portlet-resource> section, actions and default permissions are defined
on the portlet itself. Changes to portlet level permissions are per-
formed on a per-community basis. The settings here affect whether
users can add the portlet to a page, edit its configuration, or view the
portlet at all, regardless of content. All these actions are defined inside
the <supports> tag. The default portlet-level permissions for members of
the community are defined inside the <community-defaults> tag. In this
case, members of a community should be able to view any blogs in
that community. Likewise, default guest permissions are defined in
<guest-defaults>. <guest-unsupported> contains permissions that a guest
may never be granted, even by an administrator. For the blogs portlet,
guests can never be given permission to configure the portlet or ac-
cess it in the control panel.

The next level of permissions is based on the scope of an individual
instance of the portlet. These permissions are defined in the first <mod-
el-resource> section. Notice that the <model-name> is not the name of an
actual Java class, but simply of the blogs package. This is the recom-
mended convention for permissions that refer to an instance of the
portlet as a whole.

Tip: A “scope” in Liferay is simply a way of specifying how
widely the data from an instance of a portlet is shared. For
instance, if I place a blogs portlet on a page in the guest
community, and then place another blogs portlet on another

page in the same community, the two blogs will share the same set of
posts. This is the default or “community-level” scope. If I then config-
ure one of the two blogs and change its scope to the current page, it
will no longer share content with any of the other blogs in that com-
munity. Thus, with respect to permissions, an “instance” of a blogs
portlet could exist on only one page, or span an entire community.

The difference between the portlet instance permissions defined in
this section, and the portlet permissions in the <portlet-resource> block
is subtle, but critical. You will notice that permissions such as adding
an entry or subscribing are defined at the portlet instance level. This
makes it possible to have multiple distinct blogs within a community,
each with different permissions. For instance, a food community could

 58 Security and Permissions

Liferay Frameworks

have one blog that every community member could post recipes to,
but also have a separate blog containing updates and information
about the site itself that only administrators can post to.

After defining the portlet and portlet instance as resources, we
move on to define models within the portlet that also require permis-
sions. The model resource is surrounded by the <model-resource> tag.
Within this tag, we first define the model name. This must be the fully
qualified Java class name of the model. Next we define the portlet
name that this model belongs to under the portlet-ref tag. Though un-
likely, a model can belong to multiple portlets, which you may use mul-
tiple <portlet-name> tags to define. Similar to the portlet resource ele-
ment, the model resource element also allows you to define a support-
ed list of actions that require permission to perform. You must list out
all the performable actions that require a permission check. As you can
see for a blog entry, a user must have permission in order to add com-
ments to an entry, delete an entry, change the permission setting of
an entry, update an entry, or simply to view an entry. The <communi-
ty-defaults> tag, the <guest-defaults> tag, and the <guest-unsupported> tag
are all similar in meaning to what’s explained above for a portlet re-
source.

After defining your permission scheme for your custom portlet, you
then need to tell Liferay the location of this file. For Liferay core, the
XML file would normally reside in portal/portal-impl/classes/resource-ac-
tions and a reference to the file would appear in the default.xml file. For
a plugin, you should put the file in a directory that is in the class path
for the project. Then create a properties file for your portlet (the one in
the Sample Permissions Portlet is simply called sample-permissions-port-
let.properties) and create a property called resource.actions.configs with
a value that points to the the XML file. Below is an example from the
Sample Permissions Portlet:

resource.actions.configs=resource-actions/sample-permissions-portlet.xml

 Adding a Resource
After defining resources and actions, the next task is to write code

that adds resources into the permissions system. A lot of the logic to
add resources is encapsulated in the ResourceLocalServiceImpl class. So
adding resources is as easy as calling the add resource method in Re-
sourceLocalServiceUtil class.

public void addResources(

String companyId, String groupId, String userId, String name,

String primKey, boolean portletActions,

boolean addCommunityPermissions, boolean addGuestPermissions);

For all the Java objects that require access permission, you need to
make sure that they are added as resources every time a new one is

Security and Permissions 59

Liferay Frameworks

created. For example, every time a user adds a new entry to her blog,
the addResources(…) method is called to add the new entry to the re-
source system. Here’s an example of the call from the BlogsEntryLo-
calServiceImpl class.

ResourceLocalServiceUtil.addResources(

entry.getCompanyId(), entry.getGroupId(), entry.getUserId(),

BlogsEntry.class.getName(), entry.getPrimaryKey().toString(),

false, addCommunityPermissions, addGuestPermissions);

The parameters companyId, groupId, and userId should be self explana-
tory. The name parameter is the fully qualified Java class name for the
resource object being added. The primKey parameter is the primary key
of the resource object. As for the portletActions parameter, set this to
true if you’re adding portlet action permissions. In our example, we set
it to false because we’re adding a model resource, which should be as-
sociated with permissions related to the model action defined in
blogs.xml. The addCommunityPermissions and the addGuestPermissions parame-
ters are inputs from the user. If set to true, ResourceLocalService will then
add the default permissions to the current community group and the
guest group for this resource respectively.

If you would like to provide your user the ability to choose whether
to add the default community permission and the guest permission for
the resources within your custom portlet, Liferay has a custom JSP tag
you may use to quickly add that functionality. Simply insert the <lifer-
ay-ui:input-permissions /> tag into the appropriate JSP and the checkbox-
es will show up on your JSP. Of course, make sure the tag is within the
appropriate <form> tags.

To prevent having a lot of dead resources taking up space in the
Resource_ database table, you must remember to remove them from
the Resource_ table when the resource is no longer applicable. Simply
call the deleteResource(…) method in ResourceLocalServiceUtil. Here’s an
example of a blogs entry being removed:

ResourceLocalServiceUtil.deleteResource(

entry.getCompanyId(), BlogsEntry.class.getName(),

Resource.TYPE_CLASS, Resource.SCOPE_INDIVIDUAL,

entry.getPrimaryKey().toString());

 Adding Permission
On the portlet level, no code needs to be written in order to have

the permission system work for your custom portlet. Your custom port-
let will automatically have all the permission features. If you’ve defined
any custom permissions (supported actions) in your portlet-resource
tag, those are automatically added to a list of permissions and users
can readily choose them. Of course, for your custom permissions to
have any value, you’ll need to show or hide certain functionality in

 60 Security and Permissions

Liferay Frameworks

your portlet. You can do that by checking the permission first before
performing the intended functionality.

In order to allow a user to set permissions on the model resources,
you will need to expose the permission interface to the user. This can
be done by adding two Liferay UI tags to your JSP. The first one is the
<liferay-security:permissionsURL> tag which returns a URL that takes the
user to the page to configure the permission settings. The second tag
is the <liferay-ui:icon> tag that shows a permission icon to the user. Be-
low is an example found in the file view_entry_content.jspf.

<liferay-security:permissionsURL

modelResource="<%= BlogsEntry.class.getName() %>"

modelResourceDescription="<%= entry.getTitle() %>"

resourcePrimKey="<%= entry.getPrimaryKey().toString() %>"

var="entryURL"

/>

<liferay-ui:icon image="permissions" url="<%= entryURL %>" />

The attributes you need to provide to the first tag are modelResource,
modelResourceDescription, resourcePrimKey, and var. The modelResource at-
tribute is the fully qualified Java object class name. It then gets trans-
lated in Language.properties to a more readable name.

As for the modelResourceDescription attribute, you can pass in any-
thing that best describes this model instance. In the example, the
blogs title was passed in. The resourcePrimKey attribute is simply the pri-
mary key of your model instance. The var attribute is the variable
name this URL String will get assigned to. This variable is then passed
to the <liferay-ui:icon> tag so the permission icon will have the proper
URL link. There’s also an optional attribute redirect that’s available if
you want to override the default behavior of the upper right arrow link.
That is all you need to do to enable users to configure the permission
settings for model resources.

 Checking Permissions
The last major step to implementing permission to your custom

portlet is to check permission. This may be done in a couple of places.
For example, your business layer should check for permission before
deleting a resource, or your user interface should hide a button that
adds a model (e.g., a calendar event) if the user does not have permis-
sion to do so.

Similar to the other steps, the default permissions for the portlet re-
sources are automatically checked for you. You do not need to imple-
ment anything for your portlet to discriminate whether a user is al-
lowed to view or to configure the portlet itself. However, you do need
to implement any custom permission you have defined in your re-

Security and Permissions 61

Liferay Frameworks

source-actions XML file. In the blogs portlet example, one custom sup-
ported action is ADD_ENTRY. There are two places in the source code
that check for this permission. The first one is in the file view_en-
tries.jsp. The presence of the add entry button is contingent on
whether the user has permission to add entry (and also whether the
user is in tab one).

<%

boolean showAddEntryButton = tabs1.equals("entries") &&
PortletPermission.contains(permissionChecker, plid, PortletKeys.BLOGS,
ActionKeys.ADD_ENTRY);

%>

The second place that checks for the add entry permission is in the
file BlogsEntryServiceImpl. (Notice the difference between this file and the
BlogsEntryLocalServiceImpl.) In the addEntry(…) method, a call is made
to check whether the incoming request has permission to add entry.

PortletPermission.check(

getPermissionChecker(), plid, PortletKeys.BLOGS,

ActionKeys.ADD_ENTRY);

If the check fails, it throws a PrincipalException and the add entry re-
quest aborts. You’re probably wondering what the PortletPermission and
the PermissionChecker classes do. Let’s take a look at these two classes.

The PermissionChecker class has a method called hasPermission(…) that
checks whether a user making a resource request has the necessary
access permission. If the user is not signed in (guest user), it checks
for guest permissions. Otherwise, it checks for user permissions. This
class is available to you in two places. First in your business logic layer,
you can obtain an instance of the PermissionChecker by calling the getPer-
missionChecker() method inside your ServiceImpl class. This method is
available because all ServiceImpl (not LocalServiceImpl) classes extend
the PrincipalBean class, which implements the getPermissionChecker()
method. The other place where you can obtain an instance of the Per-
missionChecker class is in your JSP files. If your JSP file contains the port-
let tag <portlet:defineObjects /> or includes another JSP file that does,
you’ll have an instance of the PermissionChecker class available to you
via the permissionChecker variable. Now that you know what the Permis-
sionChecker does and how to obtain an instance of it, let’s take a look at
Liferay’s convention in using it.

PortletPermission is a helper class that makes it easy for you to
check permission on portlet resources (as opposed to model resources,
covered later). It has two static methods called check(…) and another
two called contains(…). They are all essentially the same. The two differ-
ences between them are:

1. One check(…) method and one contains(…) method take in the
portlet layout ID variable (plid).

 62 Security and Permissions

Liferay Frameworks

2. The check(…) methods throw a new PrincipalException if user
does not have permission, and the contains(…) methods re-
turn a boolean indicating whether user has permission.

The contains(…) methods are meant to be used in your JSP files since
they return a boolean instead of throwing an exception. The check(…)
methods are meant to be called in your business layer (ServiceImpl).
Let’s revisit the blogs portlet example below. (The addEntry(…) method
is found in BlogsEntryServiceImpl.)

public BlogsEntry addEntry(

long plid, String title, String content, int displayDateMonth,

int displayDateDay, int displayDateYear, int displayDateHour,

int displayDateMinute, String[] tagsEntries,

boolean addCommunityPermissions, boolean addGuestPermissions,

ThemeDisplay themeDisplay)

throws PortalException, SystemException {

PortletPermissionUtil.check(

getPermissionChecker(), plid, PortletKeys.BLOGS,

ActionKeys.ADD_ENTRY);

return blogsEntryLocalService.addEntry(

getUserId(), plid, title, content, displayDateMonth, displayDateDay,

displayDateYear, displayDateHour, displayDateMinute, tagsEntries,

addCommunityPermissions, addGuestPermissions, themeDisplay);

}

Before the addEntry(…) method calls BlogsEntryLocalServiceUtil.addEn-
try(…) to add a blogs entry, it calls PortletPermission.check(…) to validate
user permission. If the check fails, a PrincipalException is thrown and an
entry will not be added. Note the parameters passed into the method.
Again, the getPermissionChecker() method is readily available in all Servi-
ceImpl classes. The plid variable is passed into the method by its caller
(most likely from a PortletAction class). PortletKeys.BLOGS is just a static
String indicating that the permission check is against the blogs portlet.
ActionKeys.ADD_ENTRY is also a static String to indicate the action requiring
the permission check. You’re encouraged to do likewise with your cus-
tom portlet names and custom action keys.

Whether you need to pass in a portlet layout ID (plid) depends on
whether your custom portlet supports multiple instances. Let’s take a
look at the message board portlet for example. A community may
need three separate page layouts, each having a separate instance of
the message board portlet. Only by using the portlet layout ID will the
permission system be able to distinguish the three separate instances
of the message board portlet. This way, permission can be assigned
separately in all three instances. Though in general, most portlets
won’t need to use the portlet layout ID in relation to the permission
system.

Security and Permissions 63

Liferay Frameworks

Since the ServiceImpl class extends the PrincipalBean class, it has ac-
cess to information of the current user making the service request.
Therefore, the ServiceImpl class is the ideal place in your business layer
to check user permission. Liferay’s convention is to implement the ac-
tual business logic inside the LocalServiceImpl methods, and then the
ServiceImpl calls these methods via the LocalServiceUtil class after the
permission check completes successfully. Your PortletAction classes
should make calls to ServiceUtil (wrapper to ServiceImpl) guaranteeing
that permission is first checked before the request is fulfilled.

Checking model resource permission is very similar to checking
portlet resource permission. The only major difference is that instead
of calling methods found in the PortletPermission class mentioned previ-
ously, you need to create your own helper class to assist you in check-
ing permission. The next section will detail how this is done.

It is advisable to have a helper class to help check permission on
your custom models. This custom permission class is similar to the
PortletPermission class but is tailored to work with your custom models.
While you can implement this class however you like, we encourage
you to model your implementation after the PortletPermission class,
which contains four static methods. Let’s take a look at the BlogsEn-
tryPermission class.

public class BlogsEntryPermission {

public static void check(

PermissionChecker permissionChecker, long entryId, String
actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, entryId, actionId)) {

throw new PrincipalException();

}

}

public static void check(

PermissionChecker permissionChecker, BlogsEntry entry,

String actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, entry, actionId)) {

throw new PrincipalException();

}

}

public static boolean contains(

PermissionChecker permissionChecker, long entryId, String
actionId)

 64 Security and Permissions

Liferay Frameworks

throws PortalException, SystemException {

BlogsEntry entry = BlogsEntryLocalServiceUtil.getEntry(entryId);

return contains(permissionChecker, entry, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, BlogsEntry entry,

String actionId)

throws PortalException, SystemException {

return permissionChecker.hasPermission(

entry.getGroupId(), BlogsEntry.class.getName(),
entry.getEntryId(),

actionId);

}

}

Again, the two check(…) methods are meant to be called in your
business layer, while the two contains(…) methods can be used in your
JSP files. As you can see, it’s very similar to the PortletPermission class.
The two notable differences are:

1. Instead of having the portletId as one of the parameters, the
methods in this custom class take in either an entryId or a
BlogsEntry object.

2. None of the methods need to receive the portlet layout ID
(plid) as a parameter. (Your custom portlet may choose to use
the portlet layout ID if need be.)

Let’s see how this class is used in the blogs portlet code.

public BlogsEntry getEntry(String entryId) throws PortalException,
SystemException {

BlogsEntryPermission.check(

getPermissionChecker(), entryId, ActionKeys.VIEW);

return BlogsEntryLocalServiceUtil.getEntry(entryId);

}

In the BlogsEntryServiceImpl class is a method called getEntry(…). Be-
fore this method returns the blogs entry object, it calls the custom per-
mission helper class to check permission. If this call doesn’t throw an
exception, the entry is retrieved and returned to its caller.

<c:if test="<%= BlogsEntryPermission.contains(permissionChecker, entry,
ActionKeys.UPDATE) %>">

<portlet:renderURL windowState="<%= WindowState.MAXIMIZED.toString() %>"
var="entryURL">

<portlet:param name="struts_action" value="/blogs/edit_entry" />

<portlet:param name="redirect" value="<%= currentURL %>" />

Security and Permissions 65

Liferay Frameworks

<portlet:param name="entryId" value="<%= entry.getEntryId() %>" />

</portlet:renderURL>

<liferay-ui:icon image="edit" url="<%= entryURL %>" />

</c:if>

In the view_entry_content.jsp file, the BlogsEntryPermission.contains(…)
method is called to check whether or not to show the edit button.
That’s all there is to it!

Let’s review what we’ve just covered. Implementing permission
into your custom portlet consists of four main steps. First step is to de-
fine any custom resources and actions. Next step is to implement code
to register (or add) any newly created resources such as a BlogsEntry
object. The third step is to provide an interface for the user to config-
ure permission. Lastly, implement code to check permission before re-
turning resources or showing custom features. Two major resources
are portlets and Java objects. There is not a lot that needs to be done
for the portlet resource to implement the permission system since Lif-
eray Portal has a lot of that work done for you. You mainly focus your
efforts on any custom Java objects you’ve built. You’re now well
equipped to implement security in your custom Liferay portlets!

 66 Security and Permissions

	Conventions
	Publisher Notes
	Updates
	1. Introduction
	Core Technologies
	Development Strategies
	Portlets
	Themes
	Layout Templates
	Hooks
	Ext plugins
	The Web Application Integrator (WAI)

	2. The Plugins SDK
	Initial Setup
	Ant Configuration
	Plugins SDK Configuration

	Structure of the SDK

	3. Portlet Development
	Creating a Portlet
	Deploying the Portlet

	Anatomy of a Portlet
	A Closer Look at the My Greeting Portlet

	Writing the My Greeting Portlet
	Optional: Adding Friendly URL Mapping to the Portlet

	4. Creating Liferay Themes
	Creating a Theme
	Deploying the Theme

	Anatomy of a Theme
	Thumbnails
	JavaScript
	Settings
	Color Schemes
	Portal Predefined Settings

	5. Hooks
	Creating a Hook
	Deploying the Hook

	Overriding a JSP
	Performing a Custom Action
	Extending and Overriding portal.properties

	Overriding a Portal Service
	Overriding a Language.properties File

	6. Ext plugins
	Creating an Ext plugin
	Developing an Ext plugin
	Set up
	Initial deployment
	Redeployment

	Deploying in production
	Method 1: Redeploying Liferay's web application
	Method 2: Generate an aggregated WAR file

	Migrating old extension environments
	Conclusions

	7. Liferay Frameworks
	Service Builder
	Define the Database Structure
	Overview of service.xml
	Generate the Service
	Write the Local Service Class
	Built-In Liferay Services

	Security and Permissions
	Overview
	Implementing Permissions
	Adding a Resource
	Adding Permission
	Checking Permissions

